Skip to main content
Log in

Investigating the endophytic bacterial diversity and community structures in seeds of genetically related maize (Zea mays L.) genotypes

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

This research aimed to investigate the composition and diversity of endophytic bacterial community in seeds of four hybrid maize and their parental lines, which was used to reveal the potential relationship and association of endophytic bacteria between maize genotypes and their genetic relevance. High-throughput sequencing (HTS) technology showed that a total of 1419 OTUs (46.6%) were parental lines unique and 1052 OTUs (34.5%) were hybrid varieties unique, with only 575 core OTUs revealed in all the samples. Most OTUs belonged to Proteobacteria. Enterobacter (23.2%), Shigella (21.2%), Pseudomonas (15.8%) and Achromobacter (10.1%) were the major genera; the bacterial community composition and diversity of endophytic bacteria were inconsistent among different seed genotypes. Based on principal component analysis (PCA), the results referred that the endophytic composition of hybrid sample showed obvious correlation with their female parental lines, and in ‘Jingke968’ and ‘MC738’ with the same female line the endophytic community was more similar than other hybrid samples. This was the first ever use of HTS technology for investigating the endophytic bacterial diversity and community structures in seeds of genetically related maize genotypes, it was shown that, there were core microbes shared among all genotypes of seed samples, and the female parental line was more significant to impact on the composition of their hybrid seeds than male parental line. This study would provide scientific clues for the future research on the vertical transmission of endophytes among maize generations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adam M, Westphal A, Hallmann J, Heuer H (2014) Specific microbial attachment to root knot nematodes in suppressive soil. Appl Environ Microbiol 80(9):2679–2686

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Adams PD, Kloepper JW (2002) Effect of host genotype on indigenous bacterial endophytes of cotton (Gossypium hirsutum L.). Plant Soil 240(1):181–189

    Article  CAS  Google Scholar 

  • Andrés-Barrao C, Lafi FF, Alam I, Zélicourt A, Eida AA, Bokhari A, Alzubaidy H, Bajic VB, Hirt H, Saad MM (2017) Complete genome sequence analysis of Enterobacter sp. SA187, a plant multi-stress tolerance promoting endophytic bacterium. Front Microbiol 8:2023

    Article  PubMed  PubMed Central  Google Scholar 

  • Bacilio-Jiméne M, Aguilar-Flores S, del Valle MV, Pérez A, Zepeda A, Zenteno E (2001) Endophytic bacteria in rice seeds inhibit early colonization of roots by Azospirillum brasilense. Soil Biol Biochem 33:167–172

    Article  Google Scholar 

  • Barea JM, Pozo MJ, Azcon R, Azcon-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56(417):1761–1778

    Article  CAS  PubMed  Google Scholar 

  • Bodhankar S, Grover M, Hemanth S, Reddy G, Rasul S, Yadav SK, Desai S, Mallappa M, Mandapaka M, Srinivasarao C (2017) Maize seed endophytic bacteria: dominance of antagonistic, lytic enzyme-producing Bacillus spp. 3 Biotech 7(4):232

    Article  PubMed  PubMed Central  Google Scholar 

  • Brilli F, Pollastri S, Raio A, Baraldi R, Neri L, Bartolini P, Podda A, Loreto F, Maserti BE, Balestrini R (2018) Root colonization by Pseudomonas chlororaphis primes tomato (Lycopersicum esculentum) plants for enhanced tolerance to water stress. J Plant Physiol 232:82–93

    Article  PubMed  CAS  Google Scholar 

  • Chen G, Fan HW, Mao ZW, Liu CG (2009) Breeding and popularization of new maize variety Jingdan 28. Bull Agric Sci Technol 6:125–127 (in Chinese)

    Google Scholar 

  • Chen ZB, Li B, Wang DK, Yu L, Xu SG, Ren Z, Jin S, Dai LJ (2016) Study on the diversity of endophytic bacteria in maize using Illumina MiSeq high-throughput sequencing system. Mod Food Sci Technol 32(2):113–120 (in Chinese)

    CAS  Google Scholar 

  • Chen B, Luo S, Wu Y, Ye J, Wang Q, Xu X, Pan F, Khan KY, Feng Y, Yang X (2017) The effects of the endophytic bacterium Pseudomonas fluorescens Sasm05 and IAA on the plant growth and cadmium uptake of Sedum alfredii Hance. Front Microbiol 8:2538

    Article  PubMed  PubMed Central  Google Scholar 

  • Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–145

    Article  CAS  PubMed  Google Scholar 

  • Cottyn B, Regalado E, Lanoot B, De Cleene M, Mew TW, Swings J (2001) Bacterial populations associated with rice seed in the tropical environment. Phytopathology 91:282–292

    Article  CAS  PubMed  Google Scholar 

  • Egea TC, da Silva R, Boscolo M, Rigonato J, Monteiro DA, Grünig D, da Silva H, van der Wielen F, Helmus R, Parsons JR, Gomes E (2017) Diuron degradation by bacteria from soil of sugarcane crops. Heliyon 3(12):e00471

    Article  PubMed  Google Scholar 

  • Fang H, Han L, Zhang H, Long Z, Cai L, Yu Y (2018) Dissemination of antibiotic resistance genes and human pathogenic bacteria from a pig feedlot to the surrounding stream and agricultural soils. Hazard Mater 357:53–62

    Article  CAS  Google Scholar 

  • Farhadkhani M, Nikaeen M, Yadegarfar G, Hatamzadeh M, Pourmohammadbagher H, Sahbaei Z, Rahmani HR (2018) Effects of irrigation with secondary treated wastewater on physicochemical and microbial properties of soil and produce safety in a semi-arid area. Water Res 144:356–364

    Article  CAS  PubMed  Google Scholar 

  • Frank AC, Saldierna Guzmán JP, Shay JE (2017) Transmission of bacterial endophytes. Microorganisms 5(4):70

    Article  PubMed Central  CAS  Google Scholar 

  • Furlan JPR, Stehling EG (2017) High-level of resistance to β-lactam and presence of β-lactamases encoding genes in Ochrobactrum sp. and Achromobacter sp. isolated from soil. J Glob Antimicrob Resist 11:133–137

    Article  PubMed  Google Scholar 

  • Gao JL, Sun P, Sun XH, Tong S, Yan H, Han ML, Mao XJ, Sun JG (2018) Caulobacter zeae sp. nov. and Caulobacter radicis sp. nov., novel endophytic bacteria isolated from maize root (Zea mays L.). Syst Appl Microbiol 41(6):604–610

    Article  CAS  PubMed  Google Scholar 

  • Garrido-Sanz D, Manzano J, Martín M, Redondo-Nieto M, Rivilla R (2018) Metagenomic analysis of a biphenyl-degrading soil bacterial consortium reveals the metabolic roles of specific populations. Front Microbiol 9:232

    Article  PubMed  PubMed Central  Google Scholar 

  • Guan KL (2009) Seed physiological ecology. China Agriculture Press, Beijing (in Chinese)

    Google Scholar 

  • Gunasekera TS, Radwan O, Bowen LL, Brown LM, Ruiz ON (2018) Draft genome sequence of Achromobacter spanius strain 6, a soil bacterium isolated from a hydrocarbon-degrading microcosm. Microbiol Resour Announc 7(11):e01124–e1218

    Article  PubMed  PubMed Central  Google Scholar 

  • Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16(10):463–471

    Article  CAS  PubMed  Google Scholar 

  • Hardoim PR, Hardoim CC, van Overbeek LS, van Elsas JD (2012) Dynamics of seed-borne rice endophytes on early plant growth stages. PLoS ONE 7(2):e30438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Kuang Z, Wang W, Cao L (2016) Exploring potential bacterial and fungal biocontrol agents transmitted from seeds to sprouts of wheat. Biol Control 98:27–33

    Article  Google Scholar 

  • Jai P, Naveen KA (2019) Phosphate-solubilizing Bacillus sp. enhances growth, phosphorus uptake and oil yield of Mentha arvensis L. 3 Biotech 9:126

    Google Scholar 

  • Jha CK, Patel B, Saraf M (2012) Stimulation of the growth of Jatropha curcas by the plant growth promoting bacterium Enterobacter cancerogenus MSA2. World J Microbiol Biotechnol 28(3):891–899

    Article  CAS  PubMed  Google Scholar 

  • Jiang XY, Gao JS, Xu FH, Cao YH, Tang X, Zhang XX (2013) Diversity of endophytic bacteria in rice seeds and their secretion of indole acetic acid. Acta Microbiologica Sinica 53:269–275 (in Chinese)

    CAS  PubMed  Google Scholar 

  • Khalaf EM, Raizada MN (2016) Taxonomic and functional diversity of cultured seed associated microbes of the cucurbit family. BMC Microbiol 16(1):131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kloepper JW, Beauchamp CJ (1992) A review of issues related to measuring colonization of plant roots by bacteria. Can J Microbiol 38:1219–1232

    Article  Google Scholar 

  • Li NN, Liu Y, Zhao R, Wang RH, Xiao M, Zhao JR, Cheng C (2016) Diversity of endophytic bacteria in beijing high-quality hybrid maize (Zea mays L.) seed. J Food Sci Technol 34(5):55–63 (in Chinese)

    CAS  Google Scholar 

  • Liu L, Liu Y, Song W (2009) Indigenous bacterial community diversity in hybrid rice (Oryza sativa L.) seed. Biotechnol Bull 1:95–111 (in Chinese)

    Google Scholar 

  • Liu Y, Zuo S, Xu LW, Zou YY, Song W (2011) Diversity of endophytic bacterial communities in seeds of hybrid maize (Zea mays L., Nongda108) and their parental lines. Scientia Agricultura Sinica 44(23):4763–4771 (in Chinese)

    CAS  Google Scholar 

  • Liu Y, Zuo S, Xu LW, Zou YY, Song W (2012a) Study on diversity of endophytic bacterial communities in seeds of hybrid maize and their parental lines. Arch Microbiol 194:1001–1012

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Zuo S, Zou YY, Wang JH, Song W (2012b) Investigation on diversity and population succession dynamics of indigenous bacteria of the maize spermosphere. World J Microbiol Biotechnol 28:391–396

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Zuo S, Zou YY, Wang JH, Song W (2013) Investigation on diversity and population succession dynamics of endophytic bacteria from seeds of maize (Zea mays L., Nongda108) at different growth stages. Ann Microbiol 63:71–79

    Article  Google Scholar 

  • Liu Y, Yao S, Xu PP, Cao YH, Li JX, Wang JM, Tan WQ, Cheng C (2014) Composition and diversity of endophytic bacterial communities in noni (Morinda citrifolia L.) seeds. Int J Agric Pol Res 2(3):98–104

    Google Scholar 

  • Liu Y, Zhai L, Wang RH, Zhao R, Zhang X, Chen CY, Cao Y, Cao YH, Xu TJ, Ge YY, Zhao JR, Cheng C (2015) Paenibacillus zeae sp. nov., isolated from maize (Zea mays L.) seeds. Int J Syst Evol Microbiol 65:4533–4538

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Wang RH, Cao YH, Chen CY, Bai FR, Xu TJ, Zhao R, Zhang X, Zhao JR, Cheng C (2016a) Identification and antagonistic activity of endophytic bacterial strain Paenibacillus sp. 5L8 isolated from the seeds of maize (Zea mays L., Jingke 968). Ann Microbiol 66:653–660

    Article  CAS  Google Scholar 

  • Liu Y, Zhao R, Wang RH, Yao S, Zhai L, Zhang X, Chen CY, Cao YH, Xu TJ, Ge YY, Zhao JR, Cheng C (2016b) Paenibacillus chinensis sp. nov., isolated from maize (Zea mays L.) seeds. Antonie Van Leeuwenhoek 109:207–213

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Li NN, Eom MK, Schumann P, Zhang X, Cao YH, Ge YY, Xiao M, Zhao JR, Cheng C, Kim SG (2017a) Bacillus ciccensis sp. nov., isolated from maize (Zea mays L.) seeds. Int J Syst Evol Microbiol 67:4606–4611

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Wang RH, Li YH, Cao YH, Chen CY, Qiu CZ, Bai FR, Xu TJ, Zhang X, Dai WK, Zhao JR, Cheng C (2017b) High-throughput sequencing-based analysis of the composition and diversity of endophytic bacterial community in seeds of hybrid maize planted in China. Plant Growth Regul 81:317–324

    Article  CAS  Google Scholar 

  • Liu Y, Xu PP, Yang FZ, Li M, Yan H, Li N, Zhang XX, Wang WP (2018) Composition and diversity of endophytic bacterial community in seeds of super hybrid rice ‘Shenliangyou 5814’ (Oryza sativa L.) and its parental lines. Plant Growth Regul. https://doi.org/10.1007/s10725-018-0467-4

    Article  Google Scholar 

  • Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, del Ri TG, Edgar RC, Eickhorst T, Ley RE, Hugenholtz P, Tringe SG, Dangl JL (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mano H, Morisaki H (2008) Endophytic bacteria in the rice plant. Microbes Environ 23(2):109–117

    Article  PubMed  Google Scholar 

  • Mantica P, Tala T, Ferreira JS, Peeters AG, Salmi A, Strintzi D, Weiland J, Brix M, Giroud C, Corrigan G, Zastrow KD, Naulin V, Tardini G (2010) Perturbative studies of toroidal momentum transport using neutral beam injection modulation in the Joint European Torus: experimental results, analysis methodology, and first principles modeling. Phys Plasmas 17(9):112–134

    Article  CAS  Google Scholar 

  • Mastretta C, Taghavi S, van der Lelie D, Mengoni A, Galardi F, Gonnelli C, Braca T, Boulet J, Weyens N, Vangronsveld J (2009) Endophytic bacteria from seeds of Nicotiana tabacum can reduce cadmium phytotoxicity. Int J Phytoremediation 11:251–267

    Article  CAS  Google Scholar 

  • Mehmood A, Hussain A, Irshad M, Hamayun M, Iqbal A, Rahman H, Tawab A, Ahmad A, Ayaz S (2018) Cinnamic acid as an inhibitor of growth, flavonoids exudation and endophytic fungus colonization in maize root. Plant Physiol Biochem 135:61–68

    Article  PubMed  CAS  Google Scholar 

  • Nelson EB (2004) Microbial dynamics and interactions in the spermosphere. Annu Rev Phytipathol 42:271–309

    Article  CAS  Google Scholar 

  • Nelson EB (2017) The seed microbiome: origins, interactions, and impacts. Plant Soil 422:7–34

    Article  CAS  Google Scholar 

  • Picard C, Bosco M (2006) Heterozygosis drives maize hybrids to select elite 2, 4-diacethylphloroglucinol-producing Pseudomonas strains among resident soil populations. FEMS Microbiol Ecol 58(2):193–204

    Article  CAS  PubMed  Google Scholar 

  • Qin Y, Pan X, Yuan Z (2016) Seed endophytic microbiota in a coastal plant and phytobeneficial properties of the fungus Cladosporium cladosporioides. Fungal Ecol 24:53–60

    Article  Google Scholar 

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–596

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro VP, Marriel IE, Sousa SM, Lana UGP, Mattos BB, Oliveira CA, Gomes EA (2018) Endophytic Bacillus strains enhance pearl millet growth and nutrient uptake under low-P. Braz J Microbiol 49(Suppl 1):40–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • San XC, Sun KZ, Liu JB (2007) Cultivation of hybrid maize, Zhengdan 958. Mod Agric Sci Technol 2:73 (in Chinese)

    Google Scholar 

  • Santamaría J, Toranzos GA (2003) Enteric pathogens and soil: a short review. Int Microbiol 6(1):5–9

    Article  PubMed  Google Scholar 

  • Schloss PD, Gevers D, Westcott SL (2011) Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS ONE 6(12):e27310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shade A, Jacques MA, Barret M (2017) Ecological patterns of seed microbiome diversity, transmission, and assembly. Curr Opin Microbiol 37:15–22

    Article  PubMed  Google Scholar 

  • Simon HM, Smith KP, Dodsworth JA, Guenthner B, Handelsman J, Goodman RM (2001) Influence of tomato genotype on growth of inoculated and indigenous bacteria in the spermosphere. Appl Environ Microbiol 67(2):514–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sobolev VS, Orner VA, Arias RS (2013) Distribution of bacterial endophytes in peanut seeds obtained from axenic and control plant material under field conditions. Plant Soil 371:367–376

    Article  CAS  Google Scholar 

  • Sogin ML, Morrison HG, Huber JA, Mark Welch D, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci USA 103(32):12115–12120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun HC, Wan JH, Niu YF (2005) Breeding and popularization of maize variety Yuyu 23 with high-yield, good-quality, and multiresistant. J Maize Sci 13:95–96 (in Chinese)

    Google Scholar 

  • Thulasi K, Jayakumar A, Balakrishna Pillai A, Gopalakrishnapillai Sankaramangalam VK, Kumarapillai H (2018) Efficient methanol-degrading aerobic bacteria isolated from a wetland ecosystem. Arch Microbiol 200(5):829–833

    Article  CAS  PubMed  Google Scholar 

  • Truyens S, Weyens N, Cuypers A, Vangronsveld J (2015) Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Environ Microbiol Rep 7:40–50

    Article  Google Scholar 

  • Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A (2015) The importance of the microbiome of the plant holobiont. New Phytol 206:1196–1206

    Article  PubMed  Google Scholar 

  • Verma SK, White JF (2018) Indigenous endophytic seed bacteria promote seedling development and defend against fungal disease in browntop millet (Urochloa ramosa L.). J Appl Microbiol 124(3):764–778

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang ZW, Ji YL, Chen YG (2015) Studies and biological significances of plant endophytes. Microbiol China 42(2):349–363 (in Chinese)

    Google Scholar 

  • White JR, Nagarajan N, Pop M (2009) Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput Biol 5(4):e1000352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Win KT, Tanaka F, Okazaki K, Ohwaki Y (2018) The ACC deaminase expressing endophyte Pseudomonas spp. Enhances NaCl stress tolerance by reducing stress-related ethylene production, resulting in improved growth, photosynthetic performance, and ionic balance in tomato plants. Plant Physiol Biochem 127:599–607

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Danzberger J, Schöler A, Schröder P, Schloter M, Radl V (2017) Dominant groups of potentially active bacteria shared by barley seeds become less abundant in root associated microbiome. Front Plant Sci 8:1005

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Zhang CW, Yang J, Zhang RJ, Gao JS, Zhao X, Zhao JJ, Zhao DF, Zhang XX (2018) Insights into endophytic bacterial community structures of seeds among various Oryza sativa L. rice genotypes. J Plant Growth Regul. https://doi.org/10.1007/s00344-018-9812-0

    Article  Google Scholar 

  • Zhao JR, Wang RH (2013) Development process, problem and countermeasure of maize production in China. J Agric Sci Technol 15(3):1–6 (in Chinese)

    Google Scholar 

  • Zou YY, Liu L, Liu Y, Zhao L, Deng QY, Wu J, Zhuang W, Song W (2012) Diversity of indigenous bacterial communities in Oryza sativa seeds of different varieties. Chin J Plant Ecol 36:880–890 (in Chinese)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Shahbaz Ahmad at University of Science and Technology Beijing and Miss Xiaoxiao Cheng at New Mexico State University (USA) for assistance with English language and grammatical editing of the manuscript.

Funding

This work was supported by the Natural Science Foundation of Beijing, China (no. 6182008), the Fundamental Research Funds for Central Non-profit Scientific Institution (no. 1610132017041) and the Fundamental Research Funds for the Central Universities (no. FRF-TP-18-012A1; FRF-BR-18-009B).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Liu, Huajun Zheng or Jiuran Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Not applicable.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 407 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Yan, H., Zhang, X. et al. Investigating the endophytic bacterial diversity and community structures in seeds of genetically related maize (Zea mays L.) genotypes. 3 Biotech 10, 27 (2020). https://doi.org/10.1007/s13205-019-2034-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-019-2034-8

Keywords

Navigation