Skip to main content
Log in

The potentiality of rice microsatellite markers in assessment of cross-species transferability and genetic diversity of rice and its wild relatives

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

The main aim of this study is to assess the potentiality of SSR markers for the identification of the cross-species transferability frequency in a large set of the diverse genome types of wild relative rice along with cultivated rice. Here, we used 18 different rice genotypes representing nine different genome types with 70 SSR markers to investigate the potentiality of cross-species transferability rate. The overall cross-species transferability of SSR markers across the 18 rice genotypes ranged from 38.9% (RM280 and RM447) to 100% (RM490, RM318, RM279, RM18877 and RM20033, RM19303) with an average of 76.58%. Also, cross-species transferability across chromosome ranged from 54.4% (chromosome 4) to 86.5% (chromosome 2) with an average of 74.35%. The polymorphism information content of the markers varied from 0.198 (RM263) to 0.868 (RM510) with a mean of 0.549 ± 0.153, showing high discriminatory power. The highest rate of cross-transferability was observed in O. rufipogon (97%), The highest rate of cross-species transferability was in O. rufipogon (97.00%), followed by O. glaberrima (94.20%), O. nivara (92.80%), Swarna (92.80%), O. longistaminata (91.40%), O. eichingeri (90%), O. barthii (88.50%), O. alta (82.80%), O. australiensis (77.10%), O. grandiglumis (74.20%), O. officinalis (74.20%), Zizania latifolia (70.00%), O. latifolia (68.50%), O. brachyantha (62.80%), Leersia perrieri (57.10%) and O. ridleyi (41.40%) with least in O. coarctata (28.50%). A total of 341 alleles from 70 loci were detected with the number of alleles per locus ranged from 2 to 12. Based on dendrogram analysis, the AA genome groups was separated as distinct group from the rest of the genome types. Similarly, principal coordinate analysis and structure analysis clearly separated the AA genome type from the rest of the genome types. Through the analysis of molecular variance, more variance (51%) was observed among the individual, whereas less (14%) was observed among the population. Thus, our findings may offer a valuable resource for studying the genetic diversity and relationship to facilitate the understanding of the complex mechanism of the origin and evolutionary processes of different Oryza species and wild relative rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alexander LW, Thammina CS, Kramer M (2018) Cross-transferability of SSR markers in Osmanthus. Genet Resour Crop Evol 65(1):125–136

    Article  CAS  Google Scholar 

  • Brondani C, Rangel PHN, Borba TCO, Brondani RPV (2003) Transferability of microsatellite and sequence tagged site markers in Oryza species. Hereditas 138:187–192

    Article  PubMed  Google Scholar 

  • Brondani RPV, Zucchi MI, Brondani C, Rangel PHN, Borba TCDO, Rangel PN et al (2005) Genetic structure of wild rice Oryza glumaepatula populations in three Brazilian biomes using microsatellite markers. Genetica 125:115–123

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Huang Q, Gao D, Wang J, Lang Y, Liu T et al (2013) Whole-genome sequencing of Oryza brachyantha reveals mechanisms underlying Oryza genome evolution. Nat Commun 4:1595

    Article  PubMed  Google Scholar 

  • Choudhury B, Khan ML, Dayanandan S (2013) Genetic structure and diversity of indigenous rice varieties (Oryza sativa) in Eastern Himalayan region of Northeast India. Springerplus 2:228–237

    Article  PubMed  PubMed Central  Google Scholar 

  • Dayanandan S, Bawa K, Kesseli R (1997) Conservation of microsatellites among tropical trees (Leguminosae). Am J Bot 84:1658–1663

    Article  CAS  PubMed  Google Scholar 

  • Earl DA (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4(2):359–361

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Silva I, Eduardo I, Blanca J, Esteras C, Pico B, Nuez F et al (2008) Bin mapping of genomic and EST-derived SSRs in melon (Cucumis melo L.). Theor Appl Genet 118(1):139–150

    Article  CAS  PubMed  Google Scholar 

  • Gao LZ, Zhang CH, Jia JZ, Dong YS (2005) Cross-species transferability of rice microsatellites in its wild relatives and the potential for conservation genetic studies. Genet Resour Crop Evol 52:931–940

    Article  CAS  Google Scholar 

  • Ge S, Sang T, Lu BR, Hong DY (1999) Phylogeny of rice genomes with emphasis on origins of allotetraploid species. Proc Natl Acad Sci USA 96:14400–14405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta PK, Rustgi S, Sharma S, Singh R, Kumar N, Balyan HS (2003) Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol Genet Genomics 270(4):315–323

    Article  CAS  PubMed  Google Scholar 

  • Hernández P, Dorado G, Laurie DA, Martin A, Snape JW (2001) Microsatellites and RFLP probes from maize are efficient sources of molecular markers for the biomass energy crop Miscanthus. Theor Appl Genet 102(4):616–622

    Article  Google Scholar 

  • Huang X, Zhao Y, Li C, Wang A, Zhao Q, Li W et al (2012) Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet 44(1):32–39

    Article  Google Scholar 

  • Ishii T, Hiraoka T, Kanzaki T, Akimoto M, Shishido R, Ishikawa R (2011) Evaluation of genetic variation among wild populations and local varieties of rice. Rice 4:170–177

    Article  Google Scholar 

  • Izawa T (2008) The process of rice domestication: a new model based on recent data. Rice 1(2):127–134

    Article  Google Scholar 

  • Jacquemin J, Bhatia D, Singh K, Wing RA (2013) The International Oryza Map Alignment Project: development of a genus-wide comparative genomics platform to help solve the 9 billion-people question. Curr Opin Plant Biol 16(2):147–156

    Article  CAS  PubMed  Google Scholar 

  • Jena KK, Khush GS (1990) Introgression of genes from O. officinalis Wall. ex Watt to cultivated rice. O. sativa L. Theor Appl Genet 80:737–745

    Article  CAS  PubMed  Google Scholar 

  • Khush G (2003) Productivity improvements in rice. Nutr Rev 61:S114–S116

    Article  PubMed  Google Scholar 

  • Kim K, Lee SC, Lee J, Yu Y, Yang K, Choi BS et al (2015) Complete chloroplast and ribosomal sequences for 30 accessions elucidate evolution of Oryza AA genome species. Sci Rep 5:15655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnan SG, Waters DLE, Henry RJ (2014) Australian wild rice reveals pre-domestication origin of polymorphism deserts in rice genome. PLoS ONE 9(6):e98843

    Article  Google Scholar 

  • Li G, Hu W, Qin R, Jin H, Tan G, Zhu L, He G (2008) Simple sequence repeat analyses of interspecific hybrids and MAALs of Oryza officinalis and Oryza sativa. Genetica 134(2):169–180

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Wang Y, He P, Li P, Lee J, Soltis DE, Fu C (2018) Chloroplast genome analyses and genomic resource development for epilithic sister genera Oresitrophe and Mukdenia (Saxifragaceae), using genome skimming data. BMC Genomics 19(1):235

    Article  PubMed  PubMed Central  Google Scholar 

  • Mansueto L, Fuentes RR, Borja FN, Detras J, Abriol-Santos JM, Chebotarov D et al (2016) Rice SNP-seek database update: new SNPs, indels, and queries. Nucleic Acids Res 45(D1):D1075–D1081

    Article  PubMed  PubMed Central  Google Scholar 

  • Nachimuthu SVV, Muthurajan R, Duraialaguraja S, Sivakami R, Pandian BA, Ponniah G et al (2015) Analysis of population structure and genetic diversity in rice germplasm using SSR markers: an initiative towards association mapping of agronomic traits in Oryza. Rice 8:30

    Article  PubMed  PubMed Central  Google Scholar 

  • Nei M (1972) Genetic distance between populations. Am Nat 106(949):283–292

    Article  Google Scholar 

  • Ngangkham U, Parida SK, De S, Kumar AR, Singh AK, Singh NK, Mohapatra T (2010) Genic markers for Wild Abortive (WA) based male sterility and its fertility restoration in rice. Mol Breed 26:275–292

    Article  CAS  Google Scholar 

  • Ngangkham U, Samantaray S, Yadav MK, Kumar A, Chidambaranathan P, Katara JL (2018a) Effect of multiple allelic combinations of genes on regulating grain size in rice. Plos ONE 13(1):e0190684

    Article  PubMed  PubMed Central  Google Scholar 

  • Ngangkham U, Nath M, Dokku P, Mithra SA, Ramamurthy S, Singh NK et al (2018b) An EMS-induced new sequence variant, TEMS5032, in the coding region of SRS3 gene leads to shorter grain length in rice (Oryza sativa L.). J Appl Genet 59(4):377–389

    Article  CAS  PubMed  Google Scholar 

  • Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13(5):1143–1155

    Article  CAS  PubMed  Google Scholar 

  • Orn C, Shishido R, Akimoto M, Ishikawa R, Htun TM, Nonomura KI et al (2015) Evaluation of genetic variation among wild rice populations in Cambodia. Breed Sci 65(5):430–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panaud O, Chen X, McCouch SR (1996) Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol Gen Genet 252(5):597–607

    CAS  PubMed  Google Scholar 

  • Patra BC, Ray S, Ngangkham U, Mohapatra T (2015) Rice. In: Upadhyaya HD, Singh M (eds) Genetic and genomic resources for grain cereals improvement. Elsevier Academic Press, Cambridge

    Google Scholar 

  • Peakall RO, Smouse PE (2012) GenAlex 6.5: genetic analysis in Excel. Population genetic software for teaching and research. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perrier X, Jacquemoud-Collet JP (2006) DARwin software (http://darwin.cirad.fr/darwin)

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramiah K (1953) Rice breeding and genetics. ICAR, New Delhi

    Google Scholar 

  • Ray S, Bose LK, Ray J, Ngangkham U, Katara JL, Samantaray S et al (2016) Development and validation of cross-transferable and polymorphic DNA markers for detecting alien genome introgression in Oryza sativa from Oryza brachyantha. Mol Genet Genomics 291(4):1783–1794

    Article  CAS  PubMed  Google Scholar 

  • Shakiba E, Eizenga GC (2014) Unraveling the secrets of rice wild species. In: Rice-germplasm, genetics and improvement. InTech

  • Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29(1):308–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song ZP, Xu X, Wang B, Chen JK, Lu BR (2003) Genetic diversity in the northernmost Oryza rufipogon populations estimated by SSR markers. Theor Appl Genet 107(8):1492–1499

    Article  CAS  PubMed  Google Scholar 

  • Song S, Tian D, Zhang Z, Hu S, Yu J (2019) Rice genomics: over the past two decades and into the future. Genom Proteomics Bioinf 1:1. https://doi.org/10.1016/j.gpb.2019.01.001

    Article  Google Scholar 

  • Stein JC, Yu Y, Copetti D, Zwickl DJ, Zhang L, Zhang C et al (2018) Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza. Nat Genet 50(2):285

    Article  CAS  PubMed  Google Scholar 

  • Tan G, Jin H, Li G, He R, Zhu L, He G (2005) Production and characterization of a complete set of individual chromosome additions from Oryza officinalis to Oryza sativa using RFLP and GISH analyses. Theor Appl Genet 111(8):1585–1595

    Article  CAS  PubMed  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277(5329):1063–1066

    Article  CAS  PubMed  Google Scholar 

  • Tello-Ruiz MK, Stein J, Wei S, Preece J, Olson A, Naithani S et al (2015) Gramene 2016: comparative plant genomics and pathway resources. Nucleic Acids Res 44(D1):D1133–D1140

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaughan DA, Morishima H, Kadowaki K (2003) Diversity in the Oryza genus. Curr Opin Plant Biol 6(2):139–146

    Article  CAS  PubMed  Google Scholar 

  • Wang ML, Chen ZB, Barkley NA, Newman ML, Kim W, Raymer P et al (2006) Characterization of seashore Paspalum (Paspalum vaginatum Swartz) germplasm by transferred SSRs from wheat, maize and sorghum. Genet Resour Crop Evol 53(4):779–791

    Article  Google Scholar 

  • Wang C, Liu X, Peng S, Xu Q, Yuan X, Feng Y et al (2014) Development of novel microsatellite markers for the BBCC Oryza genome (Poaceae) using high-throughput sequencing technology. PloSone 9(3):e91826

    Article  Google Scholar 

  • Wu KS, Tanksley SD (1993) Abundance, polymorphism and genetic mapping of microsatellites in rice. Mol Gen Genet 241(1–2):225–235

    Article  CAS  PubMed  Google Scholar 

  • Yadav MK, Aravindan S, Ngangkham U, Shubudhi HN, Bag MK, Totan Adak T et al (2017) Use of molecular markers in identification and characterization of resistance to rice blast in India. Plos ONE 12(4):e0176236

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamaki S, Ohyanagi H, Yamasaki M, Eiguchi M, Miyabayashi T, Kubo T et al (2013) Development of INDEL markers to discriminate all genome types rapidly in the genus Oryza. Breed Sci 63(3):246–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Z, Wu F, Luo K, Zhao Y, Yan Q, Zhang Y et al (2017) Cross-species transferability of EST-SSR markers developed from the transcriptome of Melilotus and their application to population genetics research. Sci Rep 7(1):17959

    Article  PubMed  PubMed Central  Google Scholar 

  • Yeh FC (1997) Population genetic analysis of co-dominant and dominant marker and quantitative traits. Belgian J Bot 130:129–157

    Google Scholar 

  • Yelome OI, Audenaert K, Landschoot S, Dansi A, Vanhove, Silue D et al (2018) Analysis of population structure and genetic diversity reveals gene flow and geographic patterns in cultivated rice (O. sativa and O. glaberrima) in West Africa. Euphytica 214:215

    Article  Google Scholar 

  • Yuan N, Sun Y, Comes HP, Fu CX, Qiu YX (2014) Understanding population structure and historical demography in a conservation context: population genetics of the endangered Kirengeshoma palmata (Hydrangeaceae). Am J Bot 101(3):521–529

    Article  PubMed  Google Scholar 

  • Zhang QJ, Gao LZ (2017) Rapid and recent evolution of LTR retrotransposons drives rice genome evolution during the speciation of AA-genome Oryza species. G3: Genes Genom Genet 7(6):1875–1885

    Article  CAS  Google Scholar 

  • Zhang QJ, Zhu T, Xia EH, Shi C, Liu YL, Zhang Y et al (2014) Rapid diversification of five Oryza AA genomes associated with rice adaptation. Proc Natl Acad Sci USA 111(46):E4954–E4962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Yao W, Ouyang Y, Yang W, Wang G, Lian X et al (2014) RiceVarMap: a comprehensive database of rice genomic variations. Nucleic Acids Res 43(D1):D1018–D1022

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng X, Pan C, Diao Y, You Y, Yang C, Hu Z (2013) Development of microsatellite markers by transcriptome sequencing in two species of Amorphophallus (Araceae). BMC Genomics 14(1):490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Q, Luo D, Ma L, Xie W, Wang Y, Wang Y, Liu Z (2016) Development and cross-species transferability of EST-SSR markers in Siberian Wildrye (Elymus sibiricus L.) using Illumina sequencing. Sci Rep 6:20549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu T, Xu PZ, Liu JP, Peng S, Mo XC, Gao LZ (2014) Phylogenetic relationships and genome divergence among the AA-genome species of the genus Oryza as revealed by 53 nuclear genes and 16 intergenic regions. Mol Phylogenet Evol 70:348–361

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are extremely grateful to the Director, ICAR-National Rice Research Institute, Cuttack, India, for his support and facilitation for carrying out the research work successfully.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umakanta Ngangkham.

Ethics declarations

Competing interests

The authors declare that they have no potential competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngangkham, U., Dash, S., Parida, M. et al. The potentiality of rice microsatellite markers in assessment of cross-species transferability and genetic diversity of rice and its wild relatives. 3 Biotech 9, 217 (2019). https://doi.org/10.1007/s13205-019-1757-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-019-1757-x

Keywords

Navigation