Skip to main content

Advertisement

Log in

Biochemical characterization of a key laccase-like multicopper oxidase of artificially cultivable Morchella importuna provides insights into plant-litter decomposition

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

The aim of this study is to determine the key laccase-encoding gene in the life cycle of Morchella importuna SCYDJ1-A1, and to characterize the biochemical properties of the laccase. Two laccase-like multicopper oxidase (LMCO) genes were identified in the genome of M. importuna SCYDJ1-A1 as putative laccase-encoding genes. The two genes, belonging to Auxiliary Activity family 1 subfamily 3, were named as MiLacA and MiLacB. Phylogenetic analysis of deduced amino acid sequences showed that MiLacA is closest to a LMCO of M. importuna 22J1, while MiLacB had low similarity with known Morchella LMCOs. Real-time quantitative PCR results showed that MiLacA was expressed at much higher levels than MiLacB throughout the entire course of artificial cultivation. MiLacA was overexpressed in Pichia pastoris as a recombinant protein. Biochemical characterization of the purified enzyme showed that MiLacA simultaneously possessed laccase and polyphenol-oxidase activities. MiLacA could be strongly inhibited by Fe2+, which is unusual. The optimum pH was four and optimum temperature was 60 °C. The enzyme retained over 74% of the laccase activity after 16-h incubation at 60 °C, which means that its thermostability is at the forefront among the currently known laccases. Our findings may help to elucidate how the laccase of M. importuna is involved in decaying lignin in plant litter, and could also provide a candidate thermostable laccase for potential industrial application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alfaro M, Castanera R, Lavín JL, Grigoriev IV, Oguiza JA, Ramírez L, Pisabarro AG (2016) Comparative and transcriptional analysis of the predicted secretome in the lignocellulose-degrading basidiomycete fungus Pleurotus ostreatus. Environ Microbiol 18:4710–4726

    Article  CAS  Google Scholar 

  • Baldrian P (2006) Fungal laccases—occurrence and properties. FEMS Microbiol Rev 30:215–242

    Article  CAS  Google Scholar 

  • Bánfi R, Pohner Z, Kovács J, Luzics S, Nagy A, Dudás M, Tanos P, Márialigeti K, Vajna B (2015) Characterisation of the large-scale production process of oyster mushroom (Pleurotus ostreatus) with the analysis of succession and spatial heterogeneity of lignocellulolytic enzyme activities. Fung Biol 119:1354–1363

    Article  Google Scholar 

  • Bo W, Yan Y, Xu J, Fu X, Han H, Gao J, Li Z, Wang L, Tian Y, Peng R, Yao Q (2018) Heterologous expression and characterization of a laccase from Laccaria bicolor in Pichia pastoris and Arabidopsis thaliana. J Microbiol Biotechnol 28:2057–2063

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Chefetz B, Chen Y, Hadar Y (1998) Purification and characterization of laccase from Chaetomium thermophilium and its role in humification. Appl Environ Microbiol 64:3175–3179

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christopher LP, Yao B, Ji Y (2014) Lignin biodegradation with laccase-mediator systems. Front Energ Res 2:12

    Article  Google Scholar 

  • Doré J, Perraud M, Dieryckx C, Kohler A, Morin E, Henrissat B, Lindquist E, Zimmermann SD, Girard V, Kuo A, Grigoriev IV, Martin F, Marmeisse R, Gay G (2015) Comparative genomics, proteomics and transcriptomics give new insight into the exoproteome of the basidiomycete Hebeloma cylindrosporum and its involvement in ectomycorrhizal symbiosis. New Phytol 208:1169–1187

    Article  Google Scholar 

  • Eichlerová I, Šnajdr J, Baldrian P (2012) Laccase activity in soils: considerations for the measurement of enzyme activity. Chemosphere 88:1154–1160

    Article  Google Scholar 

  • Endo K, Hayashi Y, Hibi T, Hosono K, Beppu T, Ueda K (2003) Enzymological characterization of EpoA, a laccase-like phenol oxidase produced by Streptomyces griseus. J Biochem 133:671–677

    Article  CAS  Google Scholar 

  • Hildén K, Hakala TK, Maijala P, Lundell TK, Hatakka A (2007) Novel thermotolerant laccases produced by the white-rot fungus Physisporinus rivulosus. Appl Microbiol Biotechnol 77:301–309

    Article  Google Scholar 

  • Hildén K, Hakala TK, Lundell T (2009) Thermotolerant and thermostable laccases. Biotechnol Lett 31:1117

    Article  Google Scholar 

  • Hobbie EA, Rice SF, Weber NS, Smith JE (2016) Isotopic evidence indicates saprotrophy in post-fire Morchella in Oregon and Alaska. Mycologia 108:638–645

    Article  CAS  Google Scholar 

  • Jia D, Wang B, Li X, Peng W, Zhou J, Tan H, Tang J, Huang Z, Tan W, Gan B, Yang Z, Zhao J (2017) Proteomic analysis revealed the fruiting-body protein profile of Auricularia polytricha. Curr Microbiol 74:943–951

    Article  CAS  Google Scholar 

  • Kanwal HK, Reddy MS (2014) Influence of sclerotia formation on ligninolytic enzyme production in Morchella crassipes. J Basic Microbiol 54:S63–S69

    Article  CAS  Google Scholar 

  • Katoh K, Toh H (2008) Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9:286–298

    Article  CAS  Google Scholar 

  • Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10:845–858

    Article  CAS  Google Scholar 

  • Kellner H, Luis P, Buscot F (2007) Diversity of laccase-like multicopper oxidase genes in Morchellaceae: identification of genes potentially involved in extracellular activities related to plant litter decay. FEMS Microbiol Ecol 61:153–163

    Article  CAS  Google Scholar 

  • Kiiskinen L-L, Kruus K, Bailey M, Ylösmäki E, Siika-aho M, Saloheimo M (2004) Expression of Melanocarpus albomyces laccase in Trichoderma reesei and characterization of the purified enzyme. Microbiology 150:3065–3074

    Article  CAS  Google Scholar 

  • Ling Z-R, Wang S-S, Zhu M-J, Ning Y-J, Wang S-N, Li B, Yang A-Z, Zhang G-Q, Zhao X-M (2015) An extracellular laccase with potent dye decolorizing ability from white rot fungus Trametes sp. LAC-01. Int J Biol Macromol 81:785–793

    Article  CAS  Google Scholar 

  • Liu Y, Huang L, Guo W, Jia L, Fu Y, Gui S, Lu F (2017) Cloning, expression, and characterization of a thermostable and pH-stable laccase from Klebsiella pneumoniae and its application to dye decolorization. Process Biochem 53:125–134

    Article  CAS  Google Scholar 

  • Liu Q, Ma H, Zhang Y, Dong C (2018) Artificial cultivation of true morels: current state, issues and perspectives. Crit Rev Biotechnol 38:259–271

    Article  Google Scholar 

  • Loizides M (2017) Morels: the story so far. Field Mycol 18:42–53

    Article  Google Scholar 

  • Lyashenko AV, Bento I, Zaitsev VN, Zhukhlistova NE, Zhukova YN, Gabdoulkhakov AG, Morgunova EY, Voelter W, Kachalova GS, Stepanova EV, OgV Koroleva, Lamzin VS, Tishkov VI, Betzel C, Lindley PF, AbM Mikhailov (2006) X-ray structural studies of the fungal laccase from Cerrena maxima. J Biol Inorgan Chem 11:963–973

    Article  CAS  Google Scholar 

  • Martínez ÁT, Speranza M, Ruiz-Dueñas FJ, Ferreira P, Camarero S, Guillén F, Martínez MJ, Gutiérrez Suárez A, Río Andrade JCd (2005) Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol 8:195–204

    PubMed  Google Scholar 

  • Mate DM, Alcalde M (2017) Laccase: a multi-purpose biocatalyst at the forefront of biotechnology. Microb Biotechnol 10:1457–1467

    Article  CAS  Google Scholar 

  • Michniewicz A, Ullrich R, Ledakowicz S, Hofrichter M (2006) The white-rot fungus Cerrena unicolor strain 137 produces two laccase isoforms with different physico-chemical and catalytic properties. Appl Microbiol Biotechnol 69:682–688

    Article  CAS  Google Scholar 

  • Peng W, Chen Y, Tan H, Tang J, Gan B (2015) Artificial cultivation of morels is blooming in Sichuan. In: bulletin for 8th international conference on mushroom biology and mushroom products 13

  • Peng W, Tang J, He X, Chen Y, Tan H (2016) Status analysis of morel artificial cultivation in Sichuan. Edible Med Mushrooms 24:145–150

    CAS  Google Scholar 

  • Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Meth 8:785–786

    Article  CAS  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  Google Scholar 

  • Pinto PA, Dias AA, Fraga I, Marques G, Rodrigues MAM, Colaço J, Sampaio A, Bezerra RMF (2012) Influence of ligninolytic enzymes on straw saccharification during fungal pretreatment. Bioresour Technol 111:261–267

    Article  CAS  Google Scholar 

  • Shirkavand E, Baroutian S, Gapes DJ, Young BR (2016) Combination of fungal and physicochemical processes for lignocellulosic biomass pretreatment—a review. Renew Sust Energ Rev 54:217–234

    Article  CAS  Google Scholar 

  • Tan H, Miao R, Liu T, Cao X, Wu X, Xie L, Huang Z, Peng W, Gan B (2016a) Enhancing the thermal resistance of a novel Acidobacteria-derived phytase by engineering of disulfide bridges. J Microbiol Biotechnol 26:1717–1722

    Article  CAS  Google Scholar 

  • Tan H, Wu X, Xie L, Huang Z, Peng W, Gan B (2016b) Identification and characterization of a mesophilic phytase highly resilient to high-temperatures from a fungus-garden associated metagenome. Appl Microbiol Biotechnol 100:2225–2241

    Article  CAS  Google Scholar 

  • Tan H, Wu X, Xie L, Huang Z, Peng W, Gan B (2016c) A novel phytase derived from an acidic peat-soil microbiome showing high stability under acidic plus pepsin conditions. J Mol Microbiol Biotechnol 26:291–301

    Article  CAS  Google Scholar 

  • Tan H, Tang J, Li X, Liu T, Miao R, Huang Z, Wang Y, Gan B, Peng W (2017) Biochemical characterization of a psychrophilic phytase from an artificially cultivable morel Morchella importuna. J Microbiol Biotechnol 27:2180–2189

    Article  CAS  Google Scholar 

  • Tan H, Miao R, Liu T, Yang L, Yang Y, Chen C, Lei J, Li Y, He J, Sun Q, Peng W, Gan B, Huang Z (2018) A bifunctional cellulase–xylanase of a new Chryseobacterium strain isolated from the dung of a straw-fed cattle. Microb Biotechnol 11:381–398

    Article  CAS  Google Scholar 

  • Theuerl S, Buscot F (2010) Laccases: toward disentangling their diversity and functions in relation to soil organic matter cycling. Biol Fertil Soils 46:215–225

    Article  CAS  Google Scholar 

  • Thevenot M, Dignac MF, Rumpel C (2010) Fate of lignins in soils: a review. Soil Biol Biochem 42:1200–1211

    Article  CAS  Google Scholar 

  • Xie C, Luo W, Li Z, Yan L, Zhu Z, Wang J, Hu Z, Peng Y (2016) Secretome analysis of Pleurotus eryngii reveals enzymatic composition for ramie stalk degradation. Electrophoresis 37:310–320

    Article  CAS  Google Scholar 

  • Zavarzina AG, Leontievsky AA, Golovleva LA, Trofimov SY (2004) Biotransformation of soil humic acids by blue laccase of Panus tigrinus 8/18: an in vitro study. Soil Biol Biochem 36:359–369

    Article  CAS  Google Scholar 

  • Zhang G-Q, Chen Q-J, Wang H-X, Ng TB (2013) A laccase with inhibitory activity against HIV-1 reverse transcriptase from the mycorrhizal fungus Lepiota ventriosospora. J Mol Cat B: Enz 85–86:31–36

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Sichuan Science and Technology Program (Applied Fundamental Research Project, 2018JY0637), Innovative Improvement Projects of Sichuan Province (2016ZYPZ-028, 2016LWJJ-007), and the Special Fund for Agro-scientific Research in the Public Interest (201503137).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoping Zhang or Hao Tan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 148 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Miao, R., Liu, T. et al. Biochemical characterization of a key laccase-like multicopper oxidase of artificially cultivable Morchella importuna provides insights into plant-litter decomposition. 3 Biotech 9, 171 (2019). https://doi.org/10.1007/s13205-019-1688-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-019-1688-6

Keywords

Navigation