Skip to main content
Log in

X-ray structural studies of the fungal laccase from Cerrena maxima

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Laccases are members of the blue multi-copper oxidase family. These enzymes oxidize substrate molecules by accepting electrons at a mononuclear copper centre and transferring them to a trinuclear centre. Dioxygen binds to the trinuclear centre and following the transfer of four electrons is reduced to two molecules of water. The X-ray structure of a laccase from Cerrena maxima has been elucidated at 1.9 Å resolution using synchrotron data and the molecular replacement technique. The final refinement coefficients are Rcryst = 16.8% and Rfree = 23.0%, with root mean square deviations on bond lengths and bond angles of 0.015 Å and 1.51°, respectively. The type 1 copper centre has an isoleucine residue at the axial position and the “resting” state of the trinuclear centre comprises a single oxygen (OH) moiety asymmetrically disposed between the two type 3 copper ions and a water molecule attached to the type 2 ion. Several carbohydrate binding sites have been identified and the glycan chains appear to promote the formation of well-ordered crystals. Two tyrosine residues near the protein surface have been found in a nitrated state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. In crystallographic terms an occupancy of 50% means that in the large number of molecules that constitute the crystal used for the data collection only 50% possess a copper ion at the respective site; the remaining molecules have unoccupied sites. The occupancy does not determine the oxidation state of the metal ion.

  2. Recently some 50% of the C. maxima sequence has become available (V. Tishkov, Moscow University, Russia). These incomplete data show a 98% identity with the sequence derived from the electron density maps.

References

  1. Malmström BG (1982) Ann Rev Biochem 51:21–59

    PubMed  Google Scholar 

  2. Malmström BG (1997) In: Messerschmidt A (ed) Multi-copper oxidases. World Scientific, Singapore, pp 1–22

  3. Lindley P, Card G, Zaitseva I, Zaitsev V (1999) In: Hay RW, Dilworth JR, Nolan KB (eds) Perspectives bioinorganic chemistry, vol 4. JAI, Stamford, pp 51–89

  4. Nakamura K, Go N (2005) Cellular and molecular life sciences. Birkhauser, Basel, pp 1–17

    Google Scholar 

  5. Reinhammar B (1984) In: Lontie R (ed) Copper proteins and copper enzymes. CRC, Boca Raton, pp 1–36

  6. Adman ET (1991) Adv Protein Chem 42:145–197

    CAS  PubMed  Google Scholar 

  7. Thurston CF (1994) Microbiology 140:19–26

    CAS  Google Scholar 

  8. Xu F (1996) Biochemistry 35:7608–7614

    CAS  PubMed  Google Scholar 

  9. Xu F, Shin W, Brown SH, Wahleithner JA, Sundaram UM, Solomon EI (1996) Biochim Biophys Acta 1292:303–311

    PubMed  Google Scholar 

  10. Sakurai T (1992) Biochem J 284:681–685

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Shah V, Nerud F (2002) Can J Microbiol 48:857–870

    CAS  PubMed  Google Scholar 

  12. Coll PM, Fernandez-Abalos JM, Villanueva JR, Santamaria R, Perez P (1993) Appl Environ Microbiol 59:2607–2613

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Sealey J, Ragauskas AJ (1998) Enzyme Microb Technol 23:422–426

    CAS  Google Scholar 

  14. Li K, Xu F, Eriksson KE (1999) Appl Environ Microbiol 65:2654–2660

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Duran N, Rosa MA, Annibale AD, Gianfreda I (2002) Enzyme Microb Technol 31:907–931

    CAS  Google Scholar 

  16. Claus H (2003) Arch Microbiol 179:145–150

    CAS  PubMed  Google Scholar 

  17. Tarasevich M, Yaropolov A, Bogdanskaya V, Varfolomeev S (1979) Bioelectrochem Bioenerg 6:393–403

    CAS  Google Scholar 

  18. Lee C, Gray H, Anson F, Malmström B (1984) J Electroanal Chem 172:289–300

    CAS  Google Scholar 

  19. Yaropolov A, Kharybin A, Emneus J, Marko-Varga G (1996) Bioelectrochem Bioeng 40:49–57

    CAS  Google Scholar 

  20. Shleev S, Tkac J, Chistenson A, Ruzgas T, Yaropolov A, Whittaker J, Gordon L (2005) Biosens Bioelectron 20:2517–2554

    CAS  PubMed  Google Scholar 

  21. Freire R, Pessoa C, Mello L, Kubota L (2000) J Braz Chem Soc 14:230–243

    Google Scholar 

  22. Trudeau F, Daigle F, Leech D (1997) Anal Chem 69:882–886

    CAS  PubMed  Google Scholar 

  23. Ferry Y, Leech D (2005) Electroanalysis 17:113–119

    CAS  Google Scholar 

  24. Ducros V, Brzozowski AM, Wilson KS, Brown SH, Ostergaard P, Schneider P, Yaver DS, Pedersen AH, Davies GJ (1998) Nat Struct Biol 5:310–316

    CAS  PubMed  Google Scholar 

  25. Ducros V, Brzozowski AM, Wilson KS, Ostergaard P, Schneider A, Svendson A, Davies GJ (2001) Acta Crystallogr Sect D 57:333–336

    CAS  Google Scholar 

  26. Piontek K, Antorini M, Choinowski T (2002) J Biol Chem 277:37663–37669

    CAS  PubMed  Google Scholar 

  27. Bertrand T, Jolivalt C, Briozzo P, Caminade E, Joly N, Madzak C, Mougin C (2002) Biochemistry 41:7325–7333

    CAS  PubMed  Google Scholar 

  28. Hakulinen N, Kiiskinen LL, Kruus K, Saloheimo M, Paananen A, Koivula A, Rouvinen J (2002) Nat Struct Biol 9:601–605

    CAS  PubMed  Google Scholar 

  29. Garavaglia S, Cambria MT, Miglio M, Ragusa S, Iacobazzi V, Palmieri F, D’Ambrosio C, Scaloni A, Rizzi M (2004) J Mol Biol 342:1519–1531

    CAS  PubMed  Google Scholar 

  30. Enguita FJ, Martins LO, Henriques AO, Carrondo MA (2003) J Biol Chem 278:19416–19425

    CAS  PubMed  Google Scholar 

  31. Enguita FJ, Marcal D, Martins LO, Grenha R, Henriques AO, Lindley PF, Carrondo MA (2004) J Biol Chem 279:23472–23476

    CAS  PubMed  Google Scholar 

  32. Solomon EI, Sundaram UM, Machonkin TE (1996) Chem Rev 96:2563–2606

    CAS  PubMed  Google Scholar 

  33. Cole AP, Root DE, Mukherjee P, Solomon EI, Stack TD (1996) Science 273:1848–1850

    PubMed  Google Scholar 

  34. Messerschmidt A (1997) Multi-copper oxidases. World Scientific, Singapore

  35. Lindley PF (2001) In: Bertini I, Sigel A, Sigel H (eds) Handbook on metalloproteins. Dekker, Basel, pp 763–911

  36. Solomon EI, Chen P, Metz M, Lee S-K, Palmer AE (2001) Angew Chem Int Ed Engl 40:4570–4590

    CAS  PubMed  Google Scholar 

  37. Messerchmidt A, Ladenstein R, Huber R, Bolognesi M, Avigliano L, Petruzzelli R, Rossi A, Finazzi-Agro A (1992) J Mol Biol 224:179–205

    Google Scholar 

  38. Bento I, Martins LO, Lopes GG, Carrondo MA, Lindley PF (2005) Dalton Trans 21:3507–3513

    Google Scholar 

  39. Koroleva OV, Gavrilova VP, Stepanova EV, Lebedeva VI, Sverdlova NI, Landesman EO, Yavmetdinov IM, Yaropolov A (2002) Enzyme Microb Technol 30:573–580

    CAS  Google Scholar 

  40. Korolijova-Skorobogat`ko OV, Stepanova EV, Gavrilova VP, Morozova OV, Lubimova NV, Dzchafarova AN, Jaropolov AI, Makower A (1998) Biotechnol Appl Biochem 28:47–54

    Google Scholar 

  41. Kabsch W (2001) In: Rossmann MG, Arnold E (eds) International tables for crystallography, vol F. Kluwer, Dordrecht, pp 218–225

  42. Vaguine AA, Richelle J, Wodak SJ (1999) Acta Crystallogr Sect D 55:191–205

    CAS  Google Scholar 

  43. Collaborative Computational Project Number 4 (1994) Acta Crystallogr Sect D 50:760–763

    Google Scholar 

  44. Brünger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang J-S, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Acta Crystallogr Sect D 54:905–921

    Google Scholar 

  45. Murshudov GN, Vagin AA, Dodson EJ (1997) Acta Crystallogr Sect D 53:240–255

    CAS  Google Scholar 

  46. Tronrud D (1996) In: Dodson E, Moore M, Ralph A, Bailey S (eds) Proceedings of the CCP4 study weekend. Macromolecular Refinement, Daresbury Laboratory, Warrington, pp 1–10

  47. Jones TA, Zou J-Y, Cowan SW, Kjeldgaard M (1991) Acta Crystallogr Sect A 47:110–119

    Google Scholar 

  48. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) J Appl Crystallogr 26:283–291

    CAS  Google Scholar 

  49. Ramachandran GN, Sasisekharan V (1968) Adv Protein Chem 23:283–437

    CAS  PubMed  Google Scholar 

  50. Roberts SA, Weichsel A, Grass G, Thakali K, Hazzard JT, Tollin G, Rensing C, Montfort WR (2002) Proc Natl Acad Sci USA 99:2766–2771

    CAS  PubMed  Google Scholar 

  51. Karlsson B, Aasa R, Malmström B, Lundberg L (1989) FEBS Lett 253:99–102

    CAS  Google Scholar 

  52. Gow AJ, Farkouh CR, Munson DA, Posencheg MA, Ischiropoulos H (2004) Am J Physiol Lung Cell Mol Physiol 287:L262–L268

    CAS  PubMed  Google Scholar 

  53. Ischiropoulos H (1998) Arch Biochem Biophys 356:1–11

    CAS  PubMed  Google Scholar 

  54. Morag E, Bayer A, Wilchek M (1996) Biochem J 316:193–199

    CAS  PubMed  PubMed Central  Google Scholar 

  55. DeLano WL (2002) The PyMOL molecular graphics system. DeLano Scientific, San Carlos

    Google Scholar 

Download references

Acknowledgements

This project was supported by BMBF (Bundesministerium fur Forshung and Wissenschaft under contract no. RUS/214). We would like to thank the Komarov Botanic Institute of the Russian Academy of Sciences (St. Peterburg) for generously donating the C. maxima fungus strain. We also thank the EMBL Outstation, Hamburg, for access to the synchrotron radiation facilities at DESY where the X-ray data collection was undertaken. Figures 1, 2, 3 and 4 were produced using the program PyMOL [55].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Viatcheslav N. Zaitsev, Peter F. Lindley or Al`bert M. Mikhailov.

Additional information

The diffraction data and the model coordinates have been deposited into the Protein Data Bank with accession code ID PDB 2H5U.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyashenko, A.V., Bento, I., Zaitsev, V.N. et al. X-ray structural studies of the fungal laccase from Cerrena maxima . J Biol Inorg Chem 11, 963–973 (2006). https://doi.org/10.1007/s00775-006-0158-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-006-0158-x

Keywords

Navigation