Skip to main content
Log in

Pea p68, a DEAD-box helicase, enhances salt tolerance in marker-free transgenic plants of soybean [Glycine max (L.) Merrill]

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Protein p68 is a prototype constituent of DEAD-box protein family, which is involved in RNA metabolism, induced during abiotic stress conditions. In order to address the salinity stress faced by economically important soybean crop, we have transformed soybean cv. PUSA 9712 via direct organogenesis with marker free construct of p68 gene by Agrobacterium-mediated genetic transformation. The putative transgenic plants were screened by Polymerase chain reaction (PCR), Dot blot analysis and Southern blot hybridization. Reverse transcriptase-PCR (RT-PCR) and Quantitative real-time PCR (qRT-PCR) established that the p68 gene expressed in three out of five southern positive (T1) plants. The transformed (T1) soybean plants survived irrigation upto 200 mM of NaCl whereas the non-transformed (NT) plants could not survive even 150 mM NaCl. The transgenic soybean (T1) plants showed a higher accumulation of chlorophyll, proline, CAT, APX, SOD, RWC, DHAR and MDHAR than the NT plants under salinity stress conditions. The transformed (T1) soybean plants also retained a higher net photosynthetic rate, stomatal conductance and CO2 assimilation as compared to NT plants. Further analysis revealed that (T1) soybean plants accumulated higher K+ and lower Na+ levels than NT plants. Yield performance of transformed soybean plants was estimated in the transgenic green house under salinity stress conditions. The transformed (T1) soybean plants expressing the p68 gene were morphologically similar to non-transformed plants and produced 22–24 soybean pods/plant containing 8–9 g (dry weight) of seeds at 200 mM NaCl concentration. The present investigation evidenced the role of the p68 gene against salinity, by enhancing the tolerance towards salinity stress in soybean plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

NaCl:

Sodium chloride

CaMV 35S:

Cauliflower mosaic virus 35S promoter

APX:

Ascorbate peroxidase

CAT:

Catalase

SOD:

Superoxide dismutase

DHAR:

Dehydroascorbate reductase

MDHAR:

Monodehydroascorbate reductase

MDA:

Malondialdehyde

RWC:

Relative water content

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:21–126

    Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24(1):1–15

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arun M, Chinnathambi A, Subramanyam K, Karthik S, Sivanandhan G, Theboral J, Alharbi SA, Kim CK, Ganapathi A (2016) Involvement of exogenous polyamines enhances regeneration and Agrobacterium-mediated genetic transformation in half-seeds of soybean. 3 Biotech 6(2):148

    PubMed  PubMed Central  Google Scholar 

  • Banu MS, Huda KM, Sahoo RK, Garg B, Tula S, Islam SS, Tuteja R, Tuteja N (2015) Pea p68 imparts salinity stress tolerance in rice by scavenging of ROS-mediated H2O2 and interacts with argonaute. Plant Mol Biol Rep 33(2):221–238

    CAS  Google Scholar 

  • Bartoli CG, Gomez F, Martinez DE, Guiamet JJ (2004) Mitochondria are the main target for oxidative damage in leaves of wheat (Triticum aestivum L.). J Exp Bot 55:1663–1669

    CAS  PubMed  Google Scholar 

  • Bates LS, Waldren RP, Teare JD (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    CAS  Google Scholar 

  • Bauder JW, Brock TA (2001) Irrigation water quality, soil amendment, and crop effects on sodium leaching. Arid Land Res Manag 5(2):101–113

    Google Scholar 

  • Birt DF, Hendrich S, Anthony M, Alkel DL (2004) Soybeans and the prevention of chronic human disease. In: Specht J, BOerma R (eds) Soybeans: improvement, production and uses, 3rd edn. American society of Agronomy, Madison. pp 1047–1117

    Google Scholar 

  • Checker VG, Chhibbar AK, Khurana P (2012) Stress-inducible expression of barley Hva1 gene in transgenic mulberry displays enhanced tolerance against drought, salinity and cold stress. Transgenic Res 21(5):939–957

    CAS  PubMed  Google Scholar 

  • Chen GX, Asada K (1989) Ascorbate peroxidase in tea leaves:occurrence of two isozymes and the differences in their enzymatic and molecular properties. Plant Cell Physiol 30:987–998

    CAS  Google Scholar 

  • Chen N, Liu Y, Liu X, Chai J, Hu Z, Guo G, Liu H (2009) Enhanced tolerance to water deficit and salinity stress in transgenic Lycium barbarum L. plants ectopically expressing ATHK1, an Arabidopsis thaliana histidine kinase gene. Plant Mol Biol Rep 27:321–333

    Google Scholar 

  • Chen S, Cui X, Chen Y, Gu C, Miao H, Gao H, Chen F, Liu Z, Guan Z, Fang W (2011) CgDREBa transgenic Chrysanthemum confers drought and salinity tolerance. Environ Exp Bot 74:255–260

    CAS  Google Scholar 

  • Conde A, Chaves MM, Geros H (2011) Membrane transport, sensing and signaling in plant adaptation to environmental stress. Plant Cell Physiol 52:1583–1602

    CAS  PubMed  Google Scholar 

  • Cuin TA, Betts SA, Chalmandrier R, Shabala S (2008) A root’s ability to retain K+ correlates with salt tolerance in wheat. J Exp Bot 59:2697–2706

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA mini preparation: version II. Plant Mol Biol Rep 1:19–21

    CAS  Google Scholar 

  • Di R, Purcell V, Collins GB, Ghabrial SA (1996) Production of transgenic soybean lines expressing the bean pod mottle virus coat protein precursor gene. Plant Cell Rep 15(10):746–750

    CAS  PubMed  Google Scholar 

  • Doulis AG, Debian N, Kingston-Smith AH, Foyer CH (1997) Differential localization of antioxidants in maize leaves. Plant Physiol 114:1031–1037

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elsheikh EA, Wood M (1995) Nodulation and N2 fixation by soybean inoculated with salt-tolerant rhizobia or salt-sensitive bradyrhizobia in saline soil. Soil Biol Biochem 27(4–5):657–661

    CAS  Google Scholar 

  • FAOSTAT (2016) Agricultural data. http://www.fao.org/faostat/en#data/QC/visualize. Accessed 3 Aug 2018

  • Flower DJ, Ludlow MM (1986) Contribution of osmotic adjustment to the dehydration tolerance of water-stressed pigeon pea [Cajanus cajan (L.) Mill sp.] leaves. Plant Cell Environ 9:33–40

    Google Scholar 

  • Foyer CH, Descourvieres P, Kunert KJ (1994) Protection against oxygen radicals: an important defense mechanism studied in transgenic plants. Plant Cell Environ 17:507–523

    CAS  Google Scholar 

  • Fu XZ, Khan EU, Hu SS, Fan QJ, Liu JH (2011) Overexpression of the betaine aldehyde dehydrogenase gene from Atriplex hortensis enhances salt tolerance in the transgenic trifoliate orange (Poncirus trifoliata L. Raf.). Environ Exp Bot 74:106–113

    CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojiama K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    CAS  PubMed  Google Scholar 

  • Gao SQ, Chen M, Xia LQ, Xiu HJ, Xu ZS, Li LC, Zhao CP, Chen XG, Ma YZ (2009) A cotton (Gossypium hirsutum) DREbinding transcription factor gene, GhDREB, confers enhanced tolerance to drought, high salt, and freezing stresses in transgenic wheat. Plant Cell Rep 28:301–311

    CAS  PubMed  Google Scholar 

  • Gendra E, Moreno A, Alba MM, Pages M (2004) Interaction of the plant glycine-rich RNA-binding protein MA16 with a novel nucleolar DEAD box RNA helicase protein from Zea mays. Plant J 38:875–886

    CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–939

    CAS  Google Scholar 

  • Gill SS, Tajrishi M, Madan M, Tuteja N (2013) A DESD-box helicase functions in salinity stress tolerance by improving photosynthesis and antioxidant machinery in rice (Oryza sativa L. cv. PB1). Plant Mol Biol 82:1–22

    CAS  PubMed  Google Scholar 

  • Guan Q, Wu J, Zhang Y, Jiang C, Liu R, Chai C, Zhu J (2013) A DEAD box RNA helicase is critical for pre-mRNA splicing, cold responsive gene regulation, and cold tolerance in Arabidopsis. Plant Cell 25:342–356

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guan R, Qu Y, Guo Y, Yu L, Liu Y, Jiang J, Chen J, Ren Y, Liu G, Tian L, Jin L (2014) Salinity tolerance in soybean is modulated by natural variation in GmSALT3. Plant J 80(6):937–950

    CAS  PubMed  Google Scholar 

  • Hanson B, Grattan SR, Fulton A (1999) Agricultural salinity and drainage. University of California Irrigation Program. University of California, Davis

    Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    CAS  PubMed  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    CAS  PubMed  Google Scholar 

  • Hoi PX, Tuteja N (2012) Identification and sequencing analysis of P68 DEAD-box RNA helicase from Pisum sativum. Nat Sci Technol 28:28–36

    Google Scholar 

  • Houot V, Etienne P, Petitot AS, Barbier S, Blein JP, Suty L (2001) Hydrogen peroxide induces programmed cell death features in cultured tobacco BY-2 cells, in a dose- dependent manner. J Exp Bot 52:1721–1730

    CAS  PubMed  Google Scholar 

  • Hu L, Lu H, Liu Q, Chen X, Jiang X (2005) Overexpression of mtlD gene in transgenic Populus tomentosa improves salt tolerance through accumulation of mannitol. Tree Physiol 25:1273–1281

    CAS  PubMed  Google Scholar 

  • Hu R, Fan C, Li H, Zhang Q, Fu YF (2009) Evaluation of putative reference genes for gene expression normalization in soybean by quantitative real-time RT-PCR. BMC Mol Biol 10:93

    PubMed  PubMed Central  Google Scholar 

  • Huang Y, Liu ZR (2002) The ATPase, RNA unwinding, and RNA binding activities of recombinant p68 RNA helicase. J Biol Chem 277:12810–12815

    CAS  PubMed  Google Scholar 

  • Huda KM, Banu MS, Garg B, Tula S, Tuteja R, Tuteja N (2013a) OsACA6, a P-type IIB Ca2+ATPase promotes salinity and drought stress tolerance in tobacco by ROS scavenging and enhancing the expression of stress-responsive genes. Plant J 76:997–1015

    CAS  PubMed  Google Scholar 

  • Husaini AM, Abdin MZ (2008) Development of transgenic strawberry (Fragaria × ananassa Dutch.) plants tolerant to salt stress. Plant Sci 174:446–455

    CAS  Google Scholar 

  • Khan MS, Ahmad D, Khan MA (2015) Utilization of genes encoding osmoprotectants in transgenic plants for enhanced abiotic stress tolerance. Electron J Biotechnol 18(4):257–266

    CAS  Google Scholar 

  • Li D, Zhang H, Wang X, Song F (2008) OsBIRH1, a DEAD box RNA helicase with functions in modulating defence responses against pathogen infection and oxidative stress. J Exp Bot 59:2133–2146

    CAS  PubMed  PubMed Central  Google Scholar 

  • Light GG, Mahan JR, Roxas VP, Allen RD (2005) Transgenic cotton (Gossypium hirsutum L.) seedlings expressing a tobacco glutathione S-transferase fail to provide improved stress tolerance. Planta 222:346–354

    CAS  PubMed  Google Scholar 

  • Linder P, Lasko PF, Ashburner M, Leroy P, Nielsen PJ, Nishi K, Schneir J, Slonimiski PP (1989) Birth of DEAD-box. Nature 337:121–122

    CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 − ∆∆CT method. Methods 25:402–408

    CAS  Google Scholar 

  • Maas EV, Hoffman GJ (1977) Crop salt tolerance–current assessment. J Irrig Drain Div 103(2):115–134

    Google Scholar 

  • Maghuly F, Leopold S, Camara Machado AD, Fernandez EB, Khan MA, Gambino G, Gribaudo I, Schartl A, Laimer M (2006) Molecular characterization of grapevine plants transformed with GFLV resistance genes:II. Plant Cell Rep 25:546–553

    CAS  PubMed  Google Scholar 

  • Malatrasi M, Close TJ, Marmiroli N (2002) Identification and mapping of a putative stress response regulator gene in barley. Plant Mol Biol 50:143–152

    CAS  PubMed  Google Scholar 

  • McCord JM, Fridovich I (1969) Superoxide dismutase: an enzymatic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055

    CAS  PubMed  Google Scholar 

  • McCue P, Shetty K (2004) Health benefits of soy isoflavonoids and strategies for enhancement: a review. Crit Rev Food Sci Nutr 44(5):361–367

    CAS  PubMed  Google Scholar 

  • Meloni DA, Gulotta MR, Martínez CA, Oliva MA (2004) The effects of salt stress on growth, nitrate reduction and proline and glycinebetaine accumulation in Prosopis alba. Braz J Plant Physiol 16(1):39–46

    CAS  Google Scholar 

  • Miyake C, Asada K (1992) Thylakoid-bound ascorbate peroxidase in spinach chloroplasts and photoreduction of its primary oxidation product monodehydroascorbate radicals in the thylakoids. Plant Cell Physiol 35:539–549

    Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25(2):239–250

    CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev Plant Biol 59:651–681

    CAS  Google Scholar 

  • Munns R, James RA, Lauchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025–1043

    CAS  PubMed  Google Scholar 

  • Munns R, Wallace PA, Teakle NL, Colmer TD (2010) Measuring soluble ion concentrations (Na+, K+, Cl) in salt-treated plants. In: Sunkar R (ed) Methods in molecular biology Plant stress tolerance: methods and protocols, vol 639. Humana Press Springer, New York, pp 371–382

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Ann Rev Plant Physiol Plant Mol Biol 49:249–279

    CAS  Google Scholar 

  • Okanami M, Meshi T, Iwabuchi M (1998) Characterization of a DEAD box ATPase/RNA helicase protein of Arabidopsis thaliana. Nucleic Acids Res 26:2638–2643

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parkhi V, Kumar V, Sunilkumar G, Campbell LAM, Singh NK, Rathore KS (2009) Expression of apoplastically secreted tobacco osmotin in cotton confers drought tolerance. Mol Breed 23:625–639

    CAS  Google Scholar 

  • Pasapula V, Shen G, Kuppu S, Paez-Valencia J, Mendoza M, Hou P, Chen J, Qiu X, Zhu L, Zhang X, Auld D, Blumwald E, Zhang H, Gaxiola R, Payton P (2011) Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) in cotton improves drought-and salt tolerance and increases fiber yield in the field conditions. Plant Biotechnol J 9:88–99

    CAS  PubMed  Google Scholar 

  • Pradhan A, Chauhan VS, Tuteja R (2005b) Plasmodium falciparum DNA helicase 60 is a schizont stage specific, bipolar and dual helicase stimulated by PKC phosphorylation. Mol Biochem Parasitol 144:133–141

    CAS  PubMed  Google Scholar 

  • Rampino P, Pataleo S, Gerardi C, Mita G, Perrotta C (2006) Drought stress response in wheat: physiological and molecular analysis of resistant and sensitive genotypes. Plant Cell Environ 29:2143–2152

    CAS  PubMed  Google Scholar 

  • Roychowdhury A, Roy C, Sengupta DN (2007) Transgenic tobacco plants overexpressing the heterologous lea gene Rab 16a from rice during high salt and water deficit display enhanced tolerance to salinity stress. Plant Cell Rep 26:1839–1859

    Google Scholar 

  • Sanan-Mishra N, Pham XH, Sopory SK, Tuteja N (2005) Pea DNA helicase 45 overexpression in tobacco confers high salinity tolerance without affecting yield. Proc Natl Acad Sci USA 102:509–514

    CAS  PubMed  Google Scholar 

  • Shabala S (2009) Salinity and programmed cell death: unraveling mechanisms for ion specific signalling. J Exp Bot 60:709–712

    CAS  PubMed  Google Scholar 

  • Shah K, Singh M, Rai AC (2013) Effect of heat-shock induced oxidative stress is suppressed in BcZAT12 expressing drought tolerant tomato. Phytochemistry 95:109–117

    CAS  PubMed  Google Scholar 

  • Shalata A, Tal M (1998) The effect of salt stress on lipid peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. Physiol Plant 104:169–174

    CAS  Google Scholar 

  • Singh SK, Sharma HC, Goswami AM, Datta SP, Singh SP (2000) In vitro growth and leaf composition of grapevine cultivars as affected by sodium chloride. Biol Plant 43:283–286

    CAS  Google Scholar 

  • Soystats (2011) American Soybean Association. http://soystats.com/archives/2011/page_06.htm. Accessed 3 Aug 2018

  • Subramanyam K, Sailaja KV, Subramanyam K, Muralidhara Rao D, Lakshmidevi K (2011) Ectopic expression of an osmotin gene leads to enhanced salt tolerance in transgenic chilli pepper (Capsicum annum L.). Plant Cell Tissue Organ Cult 105:181–192

    CAS  Google Scholar 

  • Subramanyam K, Arun M, Mariashibu TS, Theboral J, Rajesh M, Singh NK, Manickavasagam M, Ganapathi A (2012) Overexpression of tobacco osmotin (Tbosm) in soybean conferred resistance to salinity stress and fungal infections. Planta 236(6):1909–1925

    CAS  PubMed  Google Scholar 

  • Talame V, Ozturk NZ, Bohnert HJ, Tuberosa R (2007) The dynamics of water loss affects the expression of drought-related genes in barley. J Exp Bot 58:229–240

    CAS  PubMed  Google Scholar 

  • Tambussi EA, Bartoli CG, Beltrano J, Guiamet JJ, Araus JL (2000) Oxidative damage to thylakoid proteins in water-stressed leaves of wheat (Triticum aestivum). Physiol Plant 108:398–404

    CAS  Google Scholar 

  • Turkan I, Demiral T (2009) Recent developments in understanding salinity tolerance. Environ Exp Bot 67(1):2–9

    Google Scholar 

  • Turner NC (1981) Techniques and experimental approaches for the measurement of plant water stress. Plant Soil 58:339–366

    Google Scholar 

  • Tuteja N (2003) Plant DNA helicases: the long unwinding road. J Exp Bot 54(391):2201–2214

    CAS  PubMed  Google Scholar 

  • Tuteja R, Pradhan A (2006) Unraveling the ‘DEAD-box’ helicases of Plasmodium falciparum. Gene 376:1–12

    CAS  PubMed  Google Scholar 

  • Tuteja N, Tuteja R (2004a) Prokaryotic and eukaryotic DNA helicases. Essential molecular motor proteins for cellular machinery. Eur J Biochem 271:1835–1848

    CAS  PubMed  Google Scholar 

  • Tuteja N, Tuteja R (2004b) Unraveling DNA helicases. Motif, structure, mechanism and function. Eur J Biochem 271:1849–1863

    CAS  PubMed  Google Scholar 

  • Tuteja N, Sahoo RK, Garg B, Tuteja R (2013) OsSUV3 dual helicase functions in salinity stress tolerance by maintaining photosynthesis and antioxidant machinery in rice (Oryza sativa L. cv. IR64). Plant J 76:115–127

    CAS  PubMed  Google Scholar 

  • Tuteja N, Banu MS, Huda KM, Gill SS, Jain P, Pham XH, Tuteja R (2014) Pea p68, a DEAD-box helicase, provides salinity stress tolerance in transgenic tobacco by reducing oxidative stress and improving photosynthesis machinery. PLoS One 9(5):e98287

    PubMed  PubMed Central  Google Scholar 

  • USDA (2018) Food composition database. https://ndb.nal.usda.gov/ndb/search/list?home=true. Accessed 3 Aug 2018

  • Vashisht AA, Pradhan A, Tuteja R, Tuteja N (2005) Cold- and salinity stress-induced bipolar pea DNA helicase 47 is involved in protein synthesis and stimulated by phosphorylation with protein kinase C. Plant J 44:76–87

    CAS  PubMed  Google Scholar 

  • Velikova V, Yordanov J, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain treated bean plants. Protective role of exogenous polyamines. Plant Sci 151:59–66

    CAS  Google Scholar 

  • Wang Y, Jiang L, Chen J, Tao L, An Y, Cai H, Guo C (2018) Overexpression of the alfalfa WRKY11 gene enhances salt tolerance in soybean. PLoS One 13(2):e0192382

    PubMed  PubMed Central  Google Scholar 

  • Xu GY, Rocha PSCF, Wang ML, Xu ML, Cui YC, Li LY, Zhu YX, Xia X (2011) A novel rice calmodulin-like gene, OsMSR2, enhances drought and salt tolerance and increases ABA sensitivity in Arabidopsis. Planta 234:47–59

    CAS  PubMed  Google Scholar 

  • Zhang HW, Huang ZJ, Xie BY, Chen Q, Tian X, Zhang XL, Zhang HB, Lu XY, Huang DF, Huang RF (2004) The ethylene, jasmonate, abscisic acid and NaCl-responsive tomato transcription factor JERF1 modulates expression of GCC box containing genes and salt tolerance in tobacco. Planta 220:262–270

    CAS  PubMed  Google Scholar 

  • Zhang WJ, Yang SS, Shen XY, Jin YS, Zhao HJ, Wang T (2009) The salt-tolerance gene rstB can be used as a selectable marker in plant genetic transformation. Mol Breed 23:269–277

    Google Scholar 

Download references

Acknowledgements

Jawaharlal Nehru Scholarship (Ref no: SU-1/88/2016-17/79) for doctoral studies awarded by Jawaharlal Nehru Memorial Fund, New Delhi, India is thankfully acknowledged by the first author (Sivabalan Karthik).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markandan Manickavasagam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

13205_2018_1553_MOESM1_ESM.docx

Supplementary Fig. 1 Schematic representation of binary vector pCAMBIA1300 with pea p68 gene (marker free construct). (DOCX 325 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karthik, S., Tuteja, N., Ganapathi, A. et al. Pea p68, a DEAD-box helicase, enhances salt tolerance in marker-free transgenic plants of soybean [Glycine max (L.) Merrill]. 3 Biotech 9, 10 (2019). https://doi.org/10.1007/s13205-018-1553-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-018-1553-z

Keywords

Navigation