Skip to main content
Log in

A DEAD box helicase Psp68 positively regulates salt stress responses in marker-free transgenic rice plants

  • Research
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Helicases are the motor proteins not only involved in transcriptional and post-transcription process but also provide abiotic stress tolerance in many crops. The p68, belong to the SF2 (DEAD-box helicase) family proteins and overexpression of Psp68 providing enhanced tolerance to transgenic rice plants. In this study, salinity tolerant marker-free transgenic rice has been developed by overexpressing Psp68 gene and phenotypically characterized. The Psp68 overexpressing marker-free transgenic rice plants were initially screened in the rooting medium containing salt stress and 20% polyethylene glycol (PEG). Stable integration and overexpression of Psp68 in marker-free transgenic lines were confirmed by molecular analyses including PCR, southern, western blot, and qRT-PCR analyses. The marker-free transgenic lines showed enhanced tolerance to salinity stress as displayed by early seed germination, higher chlorophyll content, reduced necrosis, more survival rate, improved seedling growth and more grain yield per plant. Furthermore, Psp68 overexpressing marker-free transgenics also accumulated less Na+ and higher K+ ions in the presence of salinity stress. Phenotypic analyses also revealed that marker-free transgenic rice lines efficiently scavenge ROS-mediated damages as displayed by lower H2O2 and malondialdehyde content, delayed electrolyte leakage, higher photosynthetic efficiency, membrane stability, proline content and enhanced activities of antioxidants enzymes. Overall, our results confirmed that Psp68 overexpression confers salinity stress tolerance in marker-free transgenics, hence the technique could be utilized to develop genetically modified crops without any biosafety issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmad I, Maathuis FJ (2014) Cellular and tissue distribution of potassium: physiological relevance, mechanisms and regulation. J Plant Physiol 171:708–714

    Article  CAS  PubMed  Google Scholar 

  • Assaha DVM, Ueda A, Saneoka H, Al-Yahyai R, Yaish MW (2017) The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Front Physiol 8:509

    Article  PubMed  PubMed Central  Google Scholar 

  • Bandumula N (2018) Rice production in Asia: key to global food security. Proc Natl Acad Sci India Sec B Biol Sci 88:1323–1328

    Article  Google Scholar 

  • Banu MSA, Huda KMK, Sahoo RK, Garg B, Tula S, Islam SMS, Renu R, Tuteja N (2014) Pea p68 imparts salinity stress tolerance in rice by scavenging of ROS-mediated H2O2 and interacts with Argonaute. Plant Mol Biol Rep 33:221–238

    Article  Google Scholar 

  • Bassil E, Zhang SQ, Gong HJ, Tajima H, Blumwald E (2019) Cation specificity of vacuolar NHX-type cation/H+ antiporters. Plant Physiol 179:616–629

    Article  CAS  PubMed  Google Scholar 

  • Britto DT, Balkos KD, Becker A, Coskun D, Huynh WQ, Kronzucker HJ (2014) Potassium and nitrogen poising: physiological changes and biomass gains in rice and barley. Can J Plant Sci 94:1085–1089

    Article  CAS  Google Scholar 

  • Chapman HD, Pratt PF (1982) Method of analysis of soils, plants and waters, 2nd edn. California University Agricultural Division, Berkeley, CA, USA, p 170

    Google Scholar 

  • Chen Z, Zhou M, Newman I, Mendham N, Zhang G, Shabala S (2007) Potassium and sodium relations in salinised barley tissues as a basis of differential salt tolerance. Funct Plant Biol 34:150–162

    Article  CAS  PubMed  Google Scholar 

  • Chung E, Cho CW, Yun BH, Choi HK, So HA, Lee SW, Lee JH (2009) Molecular cloning and characterization of the soybean DEAD-box RNA helicase gene induced by low temperature and high salinity stress. Gene 443:91–99

    Article  CAS  PubMed  Google Scholar 

  • Datta K, Tuteja N, Datta SK (2008) Transgenic research on plant abiotic stress and nutrition improvement of food derived from plants. In: Rivera-Dominguez M, Rojas RT, Tiznado-Hernandez ME (eds) A Transgenic approach in plant biochemistry and physiology. Signpost, Trivandrum, pp 181–215

    Google Scholar 

  • Ding C, Zhang W, Li D, Dong Y, Liu J, Huang Q, Su X (2020) Effect of overexpression of JERFs on intracellular K+/Na+ balance in transgenic poplar (Populus alba × P. berolinensis) under salt stress. Front Plant Sci 11:1192

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao XQ, Zhou J, Li J, Zou XW, Zhao JH, Li QL et al (2015) Efficient generation of marker-free transgenic rice plants using an improved transposon mediated transgene reintegration strategy. Plant Physiol 167:11–24

    Article  CAS  PubMed  Google Scholar 

  • Garg B, Jaiswal JP, Misra S, Tripathi BN, Prasad M (2012) A comprehensive study on dehydration-induced antioxidative responses during germination of Indian bread wheat (Triticum aestivum L.) cultivars collected from different agro climatic zones. Physiol Mol Biol Plants 18:217–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Hannachi S, Steppe K, Eloudi M, Mechi L, Bahrini I, Van Labeke MC (2022) Salt stress induced changes in photosynthesis and metabolic profiles of one tolerant (‘Bonica’) and one sensitive (‘Black Beauty’) eggplant cultivars (Solanum melongena L.). Plants 11:590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He L, Ban Y, Inoue H, Matsuda N, Liu J, Moriguchi T (2008) Enhancement of spermidine content and antioxidant capacity in transgenic pear shoots overexpressing apple spermidine synthase in response to salinity and hyperosmosis. Phytochem 69(11):2133–2141

    Article  CAS  Google Scholar 

  • Huda KMK, Banu MSA, Garg B, Tula S, Tuteja R, Tuteja N (2013) OsACA6, a P-type IIB Ca2+ATPase promotes salinity and drought stress tolerance in tobacco by ROS scavenging and enhancing the expression of stress-responsive genes. Plant J 76:997–1015

    Article  CAS  PubMed  Google Scholar 

  • Hui-yun L, Ke W, Jing W, Li-pu DU, Xin-wu PEI, Xing-guo YE (2020) Genetic and agronomic traits stability of marker-free transgenic wheat plants generated from Agrobacterium-mediated co-transformation in T2 and T3 generations. J Integr Agr 19:23–32

    Article  Google Scholar 

  • James D, Borphukan B, Fartyal D, Ram B, Yadav R, Singh J, Manna M, Sheri V, Panditi V, Yadav R, Achary VMM, Reddy MK (2018) Concurrent overexpression of OsGS1;1 and OsGS2 genes in transgenic rice (Oryza sativa L.): impact on tolerance to abiotic stresses. Front Plant Sci 9:786

    Article  PubMed  PubMed Central  Google Scholar 

  • Kant P, Kant S, Gordon M, Shaked R, Barak S (2007) Stress response suppressor1 and stress response suppressor2, two DEAD box RNA helicases that attenuate Arabidopsis responses to multiple abiotic stresses. Plant Physiol 145:814–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karthik S, Tuteja N, Ganapathi A, Manickavasagam M (2019) Pea p68, a DEAD-box helicase, enhances salt tolerance in marker-free transgenic plants of soybean [Glycine max (L.) Merrill]. Biotechnology 9:10

    Google Scholar 

  • Kerchev PI, Van Breusegem F (2022) Improving oxidative stress resilience in plants. Plant J 109:359–372

    Article  CAS  PubMed  Google Scholar 

  • Kim JS, Kim KA, Oh TR, Park CM, Kang H (2008) Functional characterization of DEAD-box RNA helicases in Arabidopsis thaliana under abiotic stress conditions. Plant Cell Physiol 49:1563–1571

    Article  CAS  PubMed  Google Scholar 

  • Kleidon J, Brinin A, Paul JY, Harding R, Dale J, Dugdale B (2020) Production of selectable marker gene-free Cavendish banana (Musa spp.) using a steroid-inducible recombinase platform. Transgenic Res 29:81–93

    Article  CAS  PubMed  Google Scholar 

  • Kooter JM, Matzke MA, Meyer P (1999) Listening to the silent genes: transgene silencing, gene regulation and pathogen control. Trends Plant Sci 4:340–347

    Article  CAS  PubMed  Google Scholar 

  • Li X, Pan L, Bi D, Tian X, Li L, Xu Z, Wang L, Zou X, Gao X, Yang H, Qu H, Zhao X, Yuan Z, He H, Qu S (2021) Generation of marker-free transgenic rice Resistant to rice blast disease using Ac/Ds transposon-mediated transgene reintegration system. Front Plant Sci 12:644437

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang WJ, Ma XL, Wan P, Liu LY (2018) Plant salt-tolerance mechanism: a review. Biochem Biophys Res Commun 495:286–291

    Article  CAS  PubMed  Google Scholar 

  • Ling F, Zhou F, Chen H, Lin Y (2016) Development of marker-free insect-resistant indica rice by Agrobacterium tumefaciens-mediated co-transformation. Front Plant Sci 7:1608

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu C, Mao B, Yuan D, Chu C, Duan M (2022) Salt tolerance in rice: physiological responses and molecular mechanisms. Crop J 10:13–25

    Article  Google Scholar 

  • Lu CA, Huang CK, Huang WS, Huang TS, Liu HY, Chen YF (2020) DEAD-box RNA helicase 42 plays a critical role in pre mRNA splicing under cold stress. Plant Physiol 182:255–271

    Article  CAS  PubMed  Google Scholar 

  • Ma N, Hu C, Wan L, Hu Q, Xiong J, Zhang C (2017) Strigolactones improve plant growth, photosynthesis, and alleviate oxidative stress under salinity in rapeseed (Brassica napus L.) by regulating gene expression. Front Plant Sci 8:1671

    Article  PubMed  PubMed Central  Google Scholar 

  • Mette MF, van der Winden J, Matzke MA, Matzke AJ (1999) Production of aberrant promoter transcripts contributes to methylation and silencing of unlinked homologous promoters in trans. EMBO J 18:241–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467

    Article  CAS  PubMed  Google Scholar 

  • Mohidem NA, Hashim N, Shamsudin R, Che Man H (2022) Rice for food security: revisiting its production, diversity, rice milling process and nutrient content. Agriculture 12:741

    Article  CAS  Google Scholar 

  • Munns R, Wallace PA, Teakl NL, Colmer TD (2010) Measuring soluble ion concentrations (Na+, K+, Cl-) in salt-treated plants. In: Sunkar R (ed) Plant stress tolerance. Methods in molecular biology (Methods and Protocols). Springer, New York, pp 371–382

    Chapter  Google Scholar 

  • Nawaz G, Kang H (2019) Rice OsRH58, a chloroplast DEAD-box RNA helicase, improves salt or drought stress tolerance in Arabidopsis by affecting chloroplast translation. BMC Plant Biol 19:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Nawaz G, Sai TZT, Lee K, Kim YO, Kang H (2018) Rice DEAD box RNA helicase OsRH53 has negative impact on Arabidopsis response to abiotic stresses. Plant Growth Regul 85:153–163

    Article  CAS  Google Scholar 

  • Nawaz G, Sai TZT, Lee K, Park SJ, Dinh SN, Kang H (2021) BrRH37, a Cabbage (Brassica rapa) DEAD-Box RNA helicase, confers drought tolerance and ABA response in transgenic Arabidopsis Plants. J Plant Biol 64:327–336

    Article  CAS  Google Scholar 

  • Nidumukkala S, Tayi L, Chittela RK, Vudem DR, Khareedu VR (2019) DEAD box helicases as promising molecular tools for engineering abiotic stress tolerance in plants. Crit Rev Biotechnol 39:395–407

    Article  CAS  PubMed  Google Scholar 

  • Ow DW (2016) The long road to recombinase-mediated plant transformation. Plant Biotechnol J 14:441–447

    Article  CAS  PubMed  Google Scholar 

  • Pan LY, Li J, Wang X, Liu ZL, Zhao JH, Liu XL et al (2020) Generation of marker-free transgenic rice carrying the blast resistance gene Pi9 using co-transformation method. Mol Plant Breed 18:433–443

    Google Scholar 

  • Patel MK, Joshi M, Mishra A, Jha B (2015) Ectopic expression of SbNHX1 gene in transgenic castor (Ricinus communis L.) enhances salt stress by modulating physiological process. Plant Cell Tiss Org 122:477–490

    Article  CAS  Google Scholar 

  • Rivero RM, Mittler R, Blumwald E, Zandalinas SI (2022) Developing climate-resilient crops: improving plant tolerance to stress combination. Plant J 109:373–389

    Article  CAS  PubMed  Google Scholar 

  • Sahoo RK, Tuteja N (2012) Development of Agrobacterium-mediated transformation technology for mature seed-derived callus tissues of indica rice cultivar IR64. GM Crops Food 3:123–128

    Article  PubMed  Google Scholar 

  • Sahoo RK, Tuteja R, Gill R, Jiménez Bremont JF, Gill SS, Tuteja N (2022) Marker-free rice (Oryza sativa L. cv. IR 64) overexpressing PDH45 gene confers salinity tolerance by maintaining photosynthesis and antioxidant machinery. Antioxidants 11:770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkar S, Roy S, Ghosh SK (2021) Development of marker-free transgenic pigeon pea (Cajanus cajan) expressing a pod borer insecticidal protein. Sci Rep 11:10543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahzad B, Yun P, Shabala L, Zhou M, Sellamuthu G, Venkataraman G, Chen ZH, Shabala S (2022) Unravelling the physiological basis of salinity stress tolerance in cultivated and wild rice species. Funct Plant Biol 49:351–364

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Bao X, Zhi Y, Wu Q, Guo Y, Yin X, Zeng L, Li J, Zhang J, He W, Liu W, Wang Q, Jia C, Li Z, Liu K (2019) Overexpression of a MYB family gene, OsMYB6, increases drought and salinity stress tolerance in transgenic rice. Front Plant Sci 10:168

    Article  PubMed  PubMed Central  Google Scholar 

  • Tuteja N, Verma S, Sahoo RK, Raveendar S, Reddy INBL (2012) Recent advances in development of marker-free transgenic plants: regulation and biosafety concern. J Biosci 37:167–197

    Article  CAS  PubMed  Google Scholar 

  • Tuteja N, Sahoo RK, Garg B, Tuteja R (2013) OsSUV3 dual helicase functions in salinity stress tolerance by maintaining photosynthesis and antioxidant machinery in rice (Oryza sativa L. cv. IR64). Plant J 76:115–127

    CAS  PubMed  Google Scholar 

  • Wang Y, Itaya A, Zhong X, Wu Y, Zhang J, Knaap EV, Olmstead R, Qi Y, Ding B (2011) Function and evolution of a microRNA that regulates a Ca2+ATPase and triggers the formation of phased small interfering RNAs in tomato reproductive growth. Plant Cell 23:3185–3203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Zhai H, He S, Zhang H, Ren Z, Zhang D, Liu Q (2016) A vacuolar Na+/H+ antiporter gene, IbNHX2, enhances salt and drought tolerance in transgenic sweet potato. Sci Hort 201:153–166

    Article  CAS  Google Scholar 

  • Wang JJ, Wang C, Wang KJ (2019) Generation of marker-free transgenic rice using CRISPR/Cas9 system controlled by floral specific promoters. J Genet Genom 46:61–64

    Article  CAS  Google Scholar 

  • Wei Q, Luo Q, Wang R, Zhang F, He Y, Zhang Y, Qiu D, Li K, Chang J, Yang G, He G (2017) A wheat R2R3-type MYB transcription factor TaODORANT1 positively regulates drought and salt stress responses in transgenic tobacco plants. Front Plant Sci 8:1374

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu H, Hill CB, Stefano G, Bose J (2021) Editorial: new insights into salinity sensing, signaling and adaptation in plants. Front Plant Sci 11:604139

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiaomei W, Rongrong K, Ting Z, Yuanyuan G, Jianlong X, Zhongze P, Gangseob L, Dongzhi L, Yanjun D (2020) A DEAD-box RNA helicase TCD33 that confers chloroplast development in rice at seedling stage under cold stress. J Plant Physiol 248:153138

    Article  PubMed  Google Scholar 

  • Yasuhara JC, DeCrease CH, Wakimoto BT (2005) Evolution of heterochromatic genes of Drosophila. Proc Natl Acad Sci USA 102:10958–10963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye XG, Xu HJ, Du LP, He GY, Wang K, Lin ZS (2014) Establishment and application of large-scale transformation systems in wheat. Sci Agric Sin 47:4155–4171

    CAS  Google Scholar 

  • Zhang Y, Fang J, Wu X, Dong L (2018) Na+/K+ balance and transport regulatory mechanisms in weedy and cultivated Rice (Oryza sativa L.) under salt stress. BMC Plant Biol 18:375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang XN, Liu LJ, Chen BW, Qin ZH, Xiao YF, Zhang Y, Yao R, Liu H, Yang H (2019) Progress in understanding the physiological and molecular responses of Populus to salt stress. Int J Mol Sci 20:1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Q, Zeng D, Yu S, Cui C, Li J, Li H et al (2018) From golden rice to a STARice: bioengineering astaxanthin biosynthesis in rice endosperm. Mol Plant 11:1440–1448

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by UGC Bangladesh. and International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India for providing the construct. The authors also thank Sher-e-Bangla Agricultural University for necessary support.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: NT KMKH. Performed the experiments: MSAB KMKH. Analyzed the data: NT MSAB KMKH HUR SP. Contributed reagents/materials/analysis tools: NT. Wrote the paper: NT MSAB KMKH HUR.

Corresponding author

Correspondence to Kazi Md. Kamrul Huda.

Ethics declarations

Competing interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banu, M.S.A., Huda, K.M.K., Harun-Ur-Rashid, M. et al. A DEAD box helicase Psp68 positively regulates salt stress responses in marker-free transgenic rice plants. Transgenic Res 32, 293–304 (2023). https://doi.org/10.1007/s11248-023-00353-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-023-00353-x

Keywords

Navigation