Skip to main content
Log in

Bioethanol production from agarophyte red seaweed, Gelidium elegans, using a novel sample preparation method for analysing bioethanol content by gas chromatography

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

In this study, Gelidium elegans is investigated for ethanol production. A combination of factors including different temperatures, acid concentration and incubation time was evaluated to determine the suitable saccharification conditions. The combination of 2.5% (w/v) H2SO4 at 120 °C for 40 min was selected for hydrolysis of the seaweed biomass, followed by purification, and fermentation to yield ethanol. The galactose and glucose were dominant reducing sugars in the G. elegans hydrolysate and under optimum condition of dilute acid hydrolysis, 39.42% of reducing sugars was produced and fermentation resulted in ethanol concentration of 13.27 ± 0.47 g/L. A modified method was evaluated for sample preparation for gas chromatography (GC) analysis of the ethanol content. A solvent mixture of acetonitrile and iso-butanol precipitated dissolved organic residues and reduced water content in GC samples at least by 90%. Results showed that this method could be successfully used for bioethanol production from seaweed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

GC:

Gas chromatography

CO2 :

Carbon dioxide

NITE:

National institute of technology evaluation

YPD:

Yeast potato dextrose

CFU:

Colony-forming unit

H2SO4 :

Sulphuric acid

FID:

Flame ionisation detector

EtOH:

Ethanol

Conc:

Concentration

ND:

Not detected

DW:

Dry weight

References

  • Adams JM, Gallagher JA, Donnison IS (2009) Fermentation study on Saccharina latissima for bioethanol production considering variable pre-treatments. J Appl Phycol 21(5):569–574

    Article  CAS  Google Scholar 

  • Canfield DV, Smith MD, Adams HJ, Houston ER (1998) Selection of an Internal Standard for postmortem ethanol analysis. Civil Aeromedical Institute, Federal Aviation Administration, Oklahama

    Google Scholar 

  • Chia SR, Chew KW, Show PL, Yap YJ, Ong HC, Ling TC, Chang JS (2018) Analysis of economic and environmental aspects of microalgae bio-refinery for biofuels production: a review. Biotechnol J 13(6):1700618

    Article  Google Scholar 

  • De Zeeuw J, Luong J (2002) Developments in stationary phase technology for gas chromatography. Trends Anal Chem 21(9):594–607

    Article  Google Scholar 

  • Galbe M, Zacchi G (2002) A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 59(6):618–628

    Article  CAS  Google Scholar 

  • Harter LN (1960) Critical values for Duncan’s new multiple range test. Biometrics 16:671–685

    Article  Google Scholar 

  • Hessami MJ, Phang SM, Salleh A, Rabiei R (2018a) Evaluation of tropical seaweeds as feedstock for bioethanol production. Int J Environ Sci Technol 15(5):977–992

    Article  CAS  Google Scholar 

  • Hessami MJ, Aishah S, Phang SM (2018b) Bioethanol a by-product of agar and carrageenan production industry from the tropical red seaweeds, Gracilaria manilaensis and Kappaphycus alvarezii. Iran J Fish Sci. https://doi.org/10.22092/ijfs.2018.117104

    Article  Google Scholar 

  • Hong KK, Vongsangnk W, Vemuri GN, Nielsen J (2011) Unravelling evolutionary strategies of yeast for improving galactose utilization through integrated systems level analysis. Proc Natl Acad Sci 108(29):12179–12184

    Article  CAS  Google Scholar 

  • Hou X, Hansen JH, Bjerre AB (2015) Integrated bioethanol and protein production from brown seaweed Laminaria digitata. Bioresour Technol 197:310–317

    Article  CAS  Google Scholar 

  • Khambhaty Y, Mody K, Gandhi MR, Thampy S, Maiti P, Brahmbhatt H, Eswaran K, Pushpito K, Ghosh PK (2012) Kappaphycus alvarezii as a source of bioethanol. Bioresour Technol 103(1):180–185

    Article  CAS  Google Scholar 

  • Kim JH, Shome B, Liao TH, Pierce JG (1967) Analysis of neutral sugars by gas liquid chromatography of alditol acetates: application to thyrotropic hormone and other glycoproteins. Anal Biochem 20(2):258–274

    Article  CAS  Google Scholar 

  • Kim HM, Wi SG, Jung S, Song Y, Bae HJ (2015) Efficient approach for bioethanol production from red seaweed Gelidium amansii. Bioresour Technol 175:128–134

    Article  CAS  Google Scholar 

  • Kuhn ER (2002) Water injections in GC how wet can you get? LCGC Asia Pac 5(3):30–32

    Google Scholar 

  • Lee KS, Hong ME, Jung SC, Ha SJ, Yu BJ, Koo HM, Park SM, Seo JH, Kweon DH, Park JC, Jin YS (2011) Improved galactose fermentation of Saccharomyces cerevisiae through inverse metabolic engineering. Biotechnol Bioeng 108(3):621–631

    Article  CAS  Google Scholar 

  • Lenihan P, Orozco A, O’neill E, Ahmad M, Rooney D, Walker G (2010) Dilute acid hydrolysis of lignocellulosic biomass. Chem Eng J 156(2):395–403

    Article  CAS  Google Scholar 

  • Lin X, Fan J, Wen Q, Li R, Jin X, Wu J, Qian W, Liu D, Xie J, Bai J, Ying H (2014) Optimization and validation of a GC–FID method for the determination of acetone-butanol-ethanol fermentation products. J Chromatogr Sci 52(3):264–270

    Article  CAS  Google Scholar 

  • Maranduba HL, Robra S, NascimentoI A, da Cruz RS, Rodrigues LB, de Almeida Neto JA (2015) Reducing the life cycle GHG emissions of microalgal biodiesel through integration with ethanol production system. Bioresour Technol 194:21–27

    Article  CAS  Google Scholar 

  • Meinita MDN, Marhaeni B, Winanto T, Jeong GT, Khan MNA, Hong YK (2013) Comparison of agarophytes (Gelidium, Gracilaria, and Gracilariopsis) as potential resources for bioethanol production. J Appl Phycol 25(6):1957–1961

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428

    Article  CAS  Google Scholar 

  • Palmqvist E, Hahn-Hagerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74(1):25–33

    Article  CAS  Google Scholar 

  • Park JH, Hong JY, Jang HC, Oh SG, Kim SH, Yoon JJ, Kim YJ (2012) Use of Gelidium amansii as a promising resource for bioethanol: a practical approach for continuous dilute-acid hydrolysis and fermentation. Bioresour Technol 108:83–88

    Article  CAS  Google Scholar 

  • Ra CH, Jeong GT, Shin MK, Kim SK (2013) Biotransformation of 5-hydroxymethylfurfural (HMF) by Scheffersomyces stipitis during ethanol fermentation of hydrolysate of the seaweed Gelidium amansii. Bioresour Technol 140:421–425

    Article  CAS  Google Scholar 

  • Salles-Filho SLM, de Castro PFD, Bin A, Edquist C, Ferro AFP, Corder S (2017) Perspectives for the Brazilian bioethanol sector: the innovation driver. Energy Policy 108:70–77

    Article  Google Scholar 

  • Santos FJ, Galceran MT (2002) The application of gas chromatography to environmental analysis. Trends Anal Chem 21(9):672–685

    Article  CAS  Google Scholar 

  • Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu TH (2008) Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319(5867):1238–1240

    Article  CAS  Google Scholar 

  • Song H, Zhang Q, Zhang Z, Wang J (2010) In vitro antioxidant activity of polysaccharides extracted from Bryopsis plumosa. Carbohydr Polym 80(4):1057–1061

    Article  CAS  Google Scholar 

  • Sudhakar K, Mamat R, Samykano M, Azmi WH, Ishak WFW, Yusaf T (2018) An overview of marine macroalgae as bioresource. Renew Sustain Energy Rev 91:165–179

    Article  Google Scholar 

  • Taherzadeh MJ, Karimi K (2007) Acid-based hydrolysis processes for ethanol from lignocellulosic materials: a review. BioResources 2(3):472–499

    CAS  Google Scholar 

  • Timson DJ (2007) Galactose metabolism in Saccharomyces cerevisiae. Dyn Biochem Process Biotechnol Mol Biol 1(1):63–73

    Google Scholar 

  • Vuppaladadiyam A, Yao JG, Florin N, George A, Wang X, Labeeuw L, Jiang Y, Davis RW, Abbas A, Ralph P, Fennell PS, Zhao M (2018) Impact of flue gas compounds on microalgae and mechanisms for carbon assimilation and utilization. ChemSusChem 11(2):334–355

    Article  CAS  Google Scholar 

  • Wang X, Liu X, Wang G (2011) Two stage hydrolysis of invasive algal feedstock for ethanol fermentation. J Integr Plant Biol 53(3):246–252

    Article  CAS  Google Scholar 

  • Wi SG, Kim HJ, Mahadevan SA, Yang DJ, Bae HJ (2009) The potential value of the seaweed Ceylon moss (Gelidium amansii) as an alternative bioenergy resource. Bioresour Technol 100(24):6658–6660

    Article  CAS  Google Scholar 

  • Yadav KS, Naseeruddin S, Prashanthi GS, Sateesh L, Rao LV (2011) Bioethanol fermentation of concentrated rice straw hydrolysate using co-culture of Saccharomyces cerevisiae and Pichia stipitis. Bioresour Technol 102(11):6473–6478

    Article  Google Scholar 

  • Yanagisawa M, Nakamura K, Ariga O, Nakasaki K (2011) Production of high concentrations of bioethanol from seaweeds that contain easily hydrolyzable polysaccharides. Proc Biochem 46:2111–2116

    Article  CAS  Google Scholar 

  • Yoon MH, Lee YW, Lee CH, Seo YB (2012) Simultaneous production of bio-ethanol and bleached pulp from red algae. Bioresour Technol 126:198–201

    Article  CAS  Google Scholar 

  • Yun EJ, Lee S, Kim HT, Pelton JG, Kim S, Ko HJ, Choi G, Kim KH (2014) The novel catabolic pathway of 3,6-anhydro-l-galactose, the main component of red macroalgae, in a marine bacterium. Environ Microbiol 17(5):1677–1688

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge University of Malaya for providing University of Malaya Research Grant (Project no: PV026-2012), GC002B-15SBS and HICoE Grant IOES-2014F. We are grateful to the Algae Research Laboratory, University of Malaya members, specifically my good friends Dr. Bahram Barati, Dr. Vejeysri Vello and Mr. Hamed Nassrolahi who assisted us in this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Javad Hessami.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hessami, M.J., Cheng, S.F., Ambati, R.R. et al. Bioethanol production from agarophyte red seaweed, Gelidium elegans, using a novel sample preparation method for analysing bioethanol content by gas chromatography. 3 Biotech 9, 25 (2019). https://doi.org/10.1007/s13205-018-1549-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-018-1549-8

Keywords

Navigation