Skip to main content
Log in

Unipolar superlattice structures based on MBE HgCdTe for infrared detection

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

Mid-wave infrared nBn structures based on HgCdTe grown by molecular beam epitaxy on GaAs (013) substrates were fabricated. A wide-gap Hg1-xCdxTe (x = 0.75 and 0.84) and a superlattice of 18 periods Hg0.20Cd0.80Te (9 nm)–HgTe (2 nm) were used as a barrier layer. In a wide temperature range, the mechanisms of the formation of dark current–voltage characteristics of fabricated nBn structures were studied. It was shown that for a barrier with a composition of 0.75, surface leakage currents dominate, and for a barrier with a composition of 0.84, the bulk component of the dark current dominates. For superlattice structures, the bulk current value is greater than for the wide-gap barrier, which is associated with a decrease in the height of the potential barrier for holes. The admittance of metal–insulator-semiconductor (MIS) test systems based on superlattice structures was studied. The features of the capacitance–voltage characteristics of MIS capacitors based on the superlattice nBn structure associated with changes in the differential resistance of the barrier layer at different polarity of the bias voltage are revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akhavan ND, Umana-Membreno GA, Gu R, Antoszewski J, Faraone L (2018) Optimization of superlattice barrier HgCdTe nBn infrared photodetectors based on an NEGF approach. IEEE Trans Electron Dev 65:591–598

    Article  CAS  Google Scholar 

  • Akhavan ND, Umana-Membreno GA, Jolley G, Antoszewski J, Faraone L (2014) A method of removing the valence band discontinuity in HgCdTe-based nBn detectors. Appl Phys Lett 105:121110

    Article  Google Scholar 

  • Bommena R, Ketharanathan S, Wijewarnasuriya PS, Dhar NK, Kodama R, Zhao J, Buurma C, Bergeson JD, Aqariden F, Velicu S (2015) High-performance MWIR HgCdTe on Si substrate focal plane array development. J Electron Mater 44:3151–3156

    Article  CAS  Google Scholar 

  • Bonchyk OY, Savytskyy HV, Swiatek Z, Morgiel Y, Izhnin II, Voitsekhovskii AV, Korotaev AG, Mynbaev KD, Fitsych OI, Varavin VS, Dvoretsky SA, Marin DV, Yakushev MV (2019) Nano-size defects in arsenic-implanted HgCdTe films: a HRTEM study. Appl Nanosci 9:725–730

    Article  CAS  Google Scholar 

  • Delli E, Letka V, Hodgson PD, Repiso E, Hayton JP, Craig AP, Lu Q, Beanland R, Krier A, Marshall ARJ, Carrington PJ (2019) Mid-infrared InAs/InAsSb superlattice nBn photodetector monolithically integrated onto silicon. ACS Photon 6:538–544

    Article  CAS  Google Scholar 

  • Fu R, Pattison J (2012) Advanced thin conformal Al2O3 films for high aspect ratio mercury cadmium telluride sensors. Opt Engin 51:104003

    Google Scholar 

  • Gravrand O, Boulard F, Ferron A, Ballet P, Hassis W (2015) a new nBn IR detection concept using HgCdTe material. J Electron Mater 44:3069–3075

    Article  CAS  Google Scholar 

  • Itsuno AM, Phillips JD, Velicu S (2011) Design and modeling of HgCdTe nBn detectors. J Electron Mater 40:1624–1629

    Article  CAS  Google Scholar 

  • Itsuno AM, Phillips JD, Velicu S (2012a) Mid-wave infrared HgCdTe nBn photodetector. Appl Phys Lett 100:161102

    Article  Google Scholar 

  • Itsuno AM, Phillips JD, Velicu S (2012b) Design of an Auger-suppressed unipolar HgCdTe NBνN photodetector. J Electron Mater 41:2886–2892

    Article  CAS  Google Scholar 

  • Izhnin II, Voitsekhovsky AV, Korotaev AG, Fitsych OI, Bonchyk AY, Savytskyy HV, Mynbaev KD, Varavin VS, Dvoretsky SA, Mikhailov NN, Yakushev MV, Jakiela R (2017) Optical and electrical studies of arsenic–implanted HgCdTe films grown with molecular beam epitaxy on GaAs and Si substrates. Infrared Phys Technol 81:52–58

    Article  CAS  Google Scholar 

  • Kinch MA (2015) The future of infrared; III–Vs or HgCdTe? J Electron Mater 44:2969–2976

    Article  CAS  Google Scholar 

  • Kopytko M, Rogalski A (2016) HgCdTe barrier infrared detectors. Prog Quant Electron 47:1–18

    Article  Google Scholar 

  • Kopytko M, Wróbel J, Jóźwikowski K, Rogalski A, Antoszewski J, Akhavan ND, Umana-Membreno GA, Faraone L, Becker CR (2015) Engineering the bandgap of unipolar HgCdTe-based nBn infrared photodetectors. J Electron Mater 44:158–166

    Article  CAS  Google Scholar 

  • Lei W, Antoszewski J, Faraone L (2015) Progress, challenges, and opportunities for HgCdTe infrared materials and detectors. Appl Phys Rev 2:041303

    Article  Google Scholar 

  • Lobre C, Jouneau PH, Mollard L, Ballet P (2014) Characterization of the microstructure of HgCdTe with p-type doping. J Electron Mater 43:2908–2914

    Article  CAS  Google Scholar 

  • Maimon S, Wicks GW (2006) nBn detector, an infrared detector with reduced dark current and higher operating temperature. Appl Phys Lett 89:151109

    Article  Google Scholar 

  • Martyniuk P, Rogalski A (2013) Modelling of MWIR HgCdTe complementary barrier HOT detector. Solid-State Electron 80:96–104

    Article  CAS  Google Scholar 

  • Mollard L, Bourgeois G, Lobre C, Gout S, Viollet-Bosson S, Baier N, Destefanis G, Gravrand O, Barnes JP, Milesi F, Kerlain A, Rubaldo L, Manissadjian A (2014) p-on-n HgCdTe infrared focal-plane arrays: from short-wave to very-long-wave infrared. J Electron Mater 43:802–807

    Article  CAS  Google Scholar 

  • Ting DZ, Soibel A, Khoshakhlagh A, Keo SA, Rafol B, Fisher AM, Pepper BJ, Luong EM, Hill CJ, Gunapala SD (2019) Advances in III-V semiconductor infrared absorbers and detectors. Infrared Phys Technol 97:210–216

    Article  CAS  Google Scholar 

  • Voitsekhovskii AV, Nesmelov SN, Dzyadukh SM, Dvoretsky SA, Mikhailov NN, Sidorov GY, Yakushev MV (2019a) Electrical properties of nBn structures based on HgCdTe grown by molecular beam epitaxy on GaAs substrates. Infrared Phys Technol 102:103035

    Article  CAS  Google Scholar 

  • Voitsekhovskii AV, Nesmelov SN, Dzyadukh SM, Dvoretsky SA, Mikhailov NN, Sidorov GY, Yakushev MV (2019b) Admittance dependences of the mid-wave infrared barrier structure based on HgCdTe grown by molecular beam epitaxy. Mater Res Exp 6:116411

    Article  CAS  Google Scholar 

  • Voitsekhovskii AV, Nesmelov SN, Dzyadukh SM, Dvoretsky SA, Mikhailov NN, Sidorov GY, Yakushev MV (2019c) Capacitive Properties of Metal–Insulator–Semiconductor Systems Based on an HgCdTe nBn Structure Grown by Molecular Beam Epitaxy. J Comm Technol Electron 64:289–293

    Article  CAS  Google Scholar 

  • Wu D, Dehzangi A, Razeghi M (2019) Demonstration of mid-wavelength infrared nBn photodetectors based on type-II InAs/InAs1-xSbx superlattice grown by metal-organic chemical vapor deposition. Appl Phys Lett 115:061102

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the Russian Science Foundation (Grant No. 19-12-00135).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Izhnin.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izhnin, I.I., Kurbanov, K.R., Voitsekhovskii, A.V. et al. Unipolar superlattice structures based on MBE HgCdTe for infrared detection. Appl Nanosci 10, 4571–4576 (2020). https://doi.org/10.1007/s13204-020-01297-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-020-01297-y

Keywords

Navigation