Skip to main content
Log in

Mid-wavelength InAs/GaSb type-II superlattice barrier detector with nBn design and M barrier

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

This study reports the performance of an InAs/GaSb type-II superlattices (T2SLs) detector with nBn structure for mid-wavelength infrared (MWIR) detection. An electronic band structure of M barrier is calculated using 8-band k·p method, and the nBn structure is designed with the M barrier. The detector is prepared by wet etching, which is simple in manufacturing process. X-ray diffraction (XRD) and atomic force microscope (AFM) characteristics indicate that the detector material has good crystal quality and surface morphology. The saturation bias of the spectral response measurements at 77 K is 300 mV, and the device is promising to work at a temperature of 140 K. Energy gap of T2SLs versus temperature is fitted by the Varshni curve, and zero temperature bandgap Eg(0), empirical coefficients α and β are extracted. A dark current density of 3.2×10−5 A/cm2 and differential resistance area (RA) product of 1.0×104 Ω·cm2 are measured at 77 K. The dominant mechanism of dark current at different temperature ranges is analyzed. The device with a 50% cutoff wavelength of 4.68 µm exhibits a responsivity of 0.6 A/W, a topside illuminated quantum efficiency of 20% without antireflection coating (ARC), and a detectivity of 9.17×1011 cm·Hz1/2/W at 77 K and 0.3 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ROGALSKI A, MARTYNIUK P. Mid-wavelength infrared nBn for HOT detectors[J]. Journal of electronic materials, 2014, 43(8): 2963–2969.

    Article  ADS  Google Scholar 

  2. LIU Z, ZHAO Z F, GUO H M, et al. Band structure and optical absorption in InAs/GaSb quantum well[J]. Acta physica sinica, 2012, 61(21): 217303.

    Article  Google Scholar 

  3. MANYK T, HACKIEWICZ K, RUTKOWSKI J, et al. Theoretical simulation of T2SLs InAs/GaSb cascade photodetector for HOT condition[J]. Journal of semiconductors, 2018, 39(9): 38–41.

    Article  Google Scholar 

  4. LIU Z J, ZHU L Q, ZHENG X T, et al. Interface effect on superlattice quality and optical properties of InAs/GaSb type-II superlattices grown by molecular beam epitaxy[J]. Chinese physics B, 2022, 31(12): 128503.

    Article  ADS  Google Scholar 

  5. MANASREH M O. Antimonide-related strained-layer heterostructures[J]. Lasers optics & photonics, 1997.

  6. HUANG J L, YAN S L, XUE T, et al. Mid-wavelength InAs/InAsSb superlattice photodetector with background limited performance temperature higher than 160 K[J]. IEEE transactions on electron devices, 2022, 69(8).

  7. LI H, ZHANG Q, QI X, et al. High resolution X-ray diffraction study in InAs/GaSb superlattice[J]. Ferroelectrics, 2022, 596(1): 86–94.

    Article  ADS  Google Scholar 

  8. SUN Y R, DONG J R, HE Y, et al. A six-junction GaAs laser power converter with different sizes of active aperture[J]. Optoelectronics letter, 2017, 13(1): 21–24.

    Article  ADS  Google Scholar 

  9. YU H L, WU H Y, ZHU H J, et al. Molecular beam epitaxy of zero lattice-mismatch InAs/GaSb type-II superlattice[J]. Chinese physics letter, 2016, 33(12): 142–145.

    Google Scholar 

  10. WANG Y B, XU Y, ZHANG Y, et al. Effect of compensation doping on the electrical and optical properties of mid-infrared type-II InAs/GaSb superlattice photodetectors[J]. Chinese physics B, 2011, 20(6): 6.

    Article  Google Scholar 

  11. ZHU H, LIU J, ZHU H, et al. High operating temperature InAs/GaSb superlattice based mid wavelength infrared photodetectors grown by MOCVD[J]. Photonics, 2021, 8(12).

  12. VURGAFTMAN I, AIFER E H, CANEDY C L, et al. Graded band gap for dark-current suppression in long-wave infrared W-structured type-II superlattice photodiodes[J]. Applied physics letter, 2006, 89(12): 4757.

    Article  Google Scholar 

  13. HILL C J, SOIBEL A, KEO S A, et al. Growth and performance of superlattice-based long wavelength complementary barrier infrared detectors (CBIRDs)[J]. SPIE proceedings, 2010, 7660.

  14. AIFER E H, WARNER J H, STINE R R, et al. Passivation of W-structured type-II superlattice long-wave infrared photodiodes[J]. SPIE proceedings, 2007, 6542.

  15. MENG C, LI J, YU L, et al. Investigation of a noise source and its impact on the photocurrent performance of long-wave-infrared InAs/GaSb type-II superlattice detectors[J]. Optics express, 2020, 28(10): 14753–14761.

    Article  ADS  Google Scholar 

  16. LEE H J, KO S Y, KIM Y H, et al. Strain-induced the dark current characteristics in InAs/GaSb type-II superlattice for mid-wave detector[J]. Journal of semiconductors, 2020, 41(6): 062302.

    Article  ADS  Google Scholar 

  17. CUI S N, CHEN W Q, JIANG D W, et al. Dark current simulation and analysis for InAs/GaSb long wavelength infrared barrier detectors[J]. 2022, 121: 104006.

    Google Scholar 

  18. MARTYNIUK P, WROBEL J, PLIS E, et al. Performance modeling of MWIR InAs/GaSb/B-Al0.2Ga0.8Sb type-II superlattice nBn detector[J]. Semiconductor science & technology, 2012, 27(5): 55002–55011.

    Article  Google Scholar 

  19. NGUYEN B M, RAZEGHI M, NATHAN V, et al. Type-II M structure photodiodes: an alternative material design for mid-wave to long wavelength infrared regimes[J]. Quantum sensing and nanophotonic devices IV, 2007, 6479: 10.

    Google Scholar 

  20. LI N, CHEN W, ZHENG D, et al. The investigations to eliminate the bias dependency of quantum efficiency of InGaAsSb nBn photodetectors for extended short wavelength infrared detection[J]. Infrared physics & technology, 2020, 111: 103461.

    Article  Google Scholar 

  21. NGUYEN B M, HOFFMAN D, HUANG K W, et al. Background limited long wavelength infrared type-II InAs/GaSb superlattice photodiodes operating at 110 K[J]. Applied physics letter, 2008, 93(12): 085316.

    Article  Google Scholar 

  22. WANG F, CHEN J, XU Z. et al. Performance comparison between the InAs-based and GaSb-based type-II superlattice photodiodes for long wavelength infrared detection[J]. Optics express, 2017, 25(3): 1629–1635.

    Article  ADS  Google Scholar 

  23. GAUTAM N, MYERS S, BARVE A V, et al. Band engineered HOT midwave infrared detectors based on type-II InAs/GaSb strained layer superlattices[J]. Infrared physics & technology, 2013, 59: 72–77.

    Article  ADS  Google Scholar 

  24. JANG A, LEE H J, KIM Y C, et al. Electrical characteristics of a Ga-free T2SL mid-wave infrared nBn detector based on an InAs/AlAsSb/InAsSb barrier[J]. Journal of electronic materials, 2022, 9: 51.

    Google Scholar 

  25. CERVERA C, JAWOROWICZ K, AT-KACI H, et al. Temperature dependence performances of InAs/GaSb superlattice photodiode[J]. Infrared physics & technology, 2011, 54(3): 258–262.

    Article  ADS  Google Scholar 

  26. HOANG A H, DEHZANGI A, ADHIKARY S, et al. High performance bias-selectable three-color short-wave/mid-wave/ long-wave infrared photodetectors based on type-II InAs/GaSb/AlSb superlattices[J]. Scientific reports, 2016, 6: 24144.

    Article  ADS  Google Scholar 

  27. PLIS E, RODRIGUEZ J B, LEE S J, et al. Electrochemical sulphur passivation of InAs/GaSb strain layer superlattice detectors[J]. Electronics letter, 2006, 42(21).

  28. KIM H S. Dark current analysis of an InAs/GaSb type II superlattice infrared photodiode with SiO2 passivation[J]. Journal of the Korean Physical Society, 2021, 78(11): 1141–1146.

    Article  ADS  Google Scholar 

  29. KIM H S. Performance of an InAs_GaSb type-II superlattice photodiode with Si3N4 surface passivation[J]. Current optics and photonics, 2021, 5(2): 129–133.

    Google Scholar 

  30. SUZUKI R, OZAKI K, TSUNODA K, et al. ALD-Al2O3 passivation effects on surface characteristics of InAs/GaSb type-II superlattice infrared photodetectors[C]//Infrared Technology and Applications XLV, April 14–18, 2019, Baltimore, Maryland, USA.

  31. PLIS E, MYERS S, KHOSHAKHLAGH A, et al. InAs/GaSb strained layer superlattice detectors with nBn design[J]. Infrared physics technology, 2009, 52(6): 335–339.

    Article  ADS  Google Scholar 

  32. HOOD A, HOFFMAN D, NGUYEN B M, et al. High differential resistance type-II InAs/GaSb superlattice photodiodes for the long-wavelength infrared[J]. Applied physics letter, 2006, 89(9): 286–324.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lianqing Zhu or Dongliang Zhang.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

This work has been supported by the Beijing Scholars Program (No.74A2111113), the National Natural Science Foundation of China (No. 62205029), the Young Elite Scientist Sponsorship Program by the China Association for Science and Technology (No.YESS20200146), and the Beijing Natural Science Foundation (No.4202027).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Zhu, L., Lu, L. et al. Mid-wavelength InAs/GaSb type-II superlattice barrier detector with nBn design and M barrier. Optoelectron. Lett. 19, 577–582 (2023). https://doi.org/10.1007/s11801-023-3032-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-023-3032-y

Document code

Navigation