Skip to main content

Advertisement

Log in

In vitro anticancer evaluation of chitosan/biogenic silver nanoparticle conjugate on Si Ha and MDA MB cell lines

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

Nanomedicine is an innovative approach to cancer therapy. The present study is in vitro anticancer evaluation of chitosan-stabilized biogenic silver nanoparticles (Ch/Bio-AgNPs) on Si Ha (human cervical carcinoma) and MDA MB (human adenocarcinoma) cells. IC50 values of Bio-AgNP and Ch/Bio-AgNP were studied by MTT assay, antiproliferative and cell apoptosis-inducing activities of the conjugate were examined by ethidium bromide/acridine orange double staining, RO analysis, DNA fragmentation, Caspase 7 and 9 assays and flow cytometry. Gene expression was studied by real-time PCR using the β-actin housekeeping gene. As a result, on MDA MB cells IC50 value for Bio-AgNP and Ch/Bio-AgNP was 4.346 ± 0.6381 µg/ml and 0.9851 ± 0.0065 µg/ml, respectively, and on Si Ha cells it was 24.35 ± 1.390 µg/ml and 2.86 ± 0.319 µg/ml, respectively. Ch/Bio-AgNPs was a potent inhibitor on MDA MB and Si Ha cell lines with characteristic apoptosis and up-regulation of p53 and p38 genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abaza A, Hegazy E-A, Mahmoud G-A, Elsheikh B (2018) Characterization and antitumor activity of chitosan/poly (vinyl alcohol) blend doped with gold and silver nanoparticles in treatment of prostatic cancer model. J Pharm Pharmacol 6:659–673. https://doi.org/10.17265/2328-2150/2018.07.003

    Article  Google Scholar 

  • Abdel-Fattah W-I, Ghareib W (2018) On the anti-cancer activities of silver nanoparticles. J Appl Biotechnol Bioeng 5:2–5. https://doi.org/10.15406/jabb.2018.05.00116

    Article  Google Scholar 

  • Aceituno V-C, Ahn S, Simu S-Y, Singh P, Mathiyalagan R, Lee H-A, Yang D-C (2016) Anticancer activity of silver nanoparticles from Panax ginseng fresh leaves in human cancer cells. Biomed Parmacother 84:158–165. https://doi.org/10.1016/j.biopha.2016.09.016

    Article  CAS  Google Scholar 

  • Adhikari H-S, Yadav P-N (2018) Anticancer activity of chitosan, chitosan derivatives, and their mechanism of action. Int J Biomater 2018:1–29. https://doi.org/10.1155/2018/2952085

    Article  CAS  Google Scholar 

  • Ahmed T-A, Aljaeid B-M (2016) Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug Des Devel Ther 10:483. https://doi.org/10.2147/DDDT.S99651

    Article  CAS  Google Scholar 

  • Augustine R, Dan P, Schlachet I, Rouxel D, Menu P, Sosnik Alejandro (2019) Chitosan ascorbate hydrogel improves water uptake capacity and cell adhesion of electrospun poly(epsilon-caprolactone) membranes. Int J Pharm 559:420–426. https://doi.org/10.1016/j.ijpharm.2019.01.063

    Article  CAS  Google Scholar 

  • Azizi M, Ghourchian H, Yazdian F, Bagherifam S, Bekhradnia S, Nyström B (2017) Anti-cancerous effect of albumin coated silver nanoparticles on MDA-MB 231 human breast cancer cell line. Sci Rep 7:5178. https://doi.org/10.1038/s41598-017-05461-3

    Article  CAS  Google Scholar 

  • Babu A, Templeton A-K, Munshi A, Ramesh R (2013) Nanoparticle-based drug delivery for therapy of lung cancer: progress and challenges. J Nanomater 2013:1–11. https://doi.org/10.1155/2013/863951

    Article  CAS  Google Scholar 

  • Badmus J-A, Ekpo O-E, Hussein A-A, Meyer M, Hiss D-C (2015) Antiproliferative and apoptosis induction potential of the methanolic leaf extract of Holarrhena floribunda (G. Don). Evid Based Complement Alternat Med 2015:756482. https://doi.org/10.1155/2015/756482

    Article  CAS  Google Scholar 

  • Barua S, Banerjee P, Sadhu A, Sengupta A, Chatterjee S, Sarkar S et al (2016) Silver nanoparticles as antibacterial and anticancer materials against human breast, cervical and oral cancer cells. J Nanosci Nanotechnol 16:1–9. https://doi.org/10.1166/jnn.2016.12636

    Article  Google Scholar 

  • Bendale Y, Bendale V, Paul S (2017) Evaluation of cytotoxic activity of platinum nanoparticles against normal and cancer cells and its anticancer potential through induction of apoptosis. Integr Med Res 6:141–148. https://doi.org/10.1016/j.imr.2017.01.006

    Article  Google Scholar 

  • Bilal M, Zhao Y, Rasheed T, Ahmed I, Hassan S-S, Nawaz M-Z, Iqbal H-N (2019) Biogenic nanoparticle-chitosan conjugates with antimicrobial, antibiofilm, and anticancer potentialities: development and characterization. Int J Environ Res Public Health 16:598. https://doi.org/10.3390/ijerph16040598

    Article  CAS  Google Scholar 

  • Cai W (2008) Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol Sci Appl 1:17–32. https://doi.org/10.2147/NSA.S3788

    Article  CAS  Google Scholar 

  • Choudhari A-S, Suryavanshi S-A, Kaul-Ghanekar R (2013) The aqueous extract of Ficus religiosa induces cell cycle arrest in human cervical cancer cell lines SiHa (HPV-16 Positive) and Apoptosis in HeLa (HPV-18 positive). PLoS One 8:e70127. https://doi.org/10.1371/journal.pone.0070127

    Article  CAS  Google Scholar 

  • Divya K, Rebello S, Jisha M-S (2014) A simple and effective method for extraction of high purity chitosan from shrimp shell waste. In: Proceedings of the international conference on advances in applied science & environmental engineering, ISBN: 978-1-63248-004-0, pp 141–145. https://doi.org/10.15224/978-1-63248-004-0-93

  • Eid M-M, El-Hallouty S-M, El-Manawaty M, AbdelZaher F-H, Al-Hada M, Ismail A-M (2018) Preparation conditions effect on the physico-chemical properties of magnetic–plasmonic core–shell nanoparticles functionalized with chitosan: green route. Nano-Struct Nano-Objects 16:215–223. https://doi.org/10.1016/j.nanoso.2018.07.006

    Article  CAS  Google Scholar 

  • Ejeromedoghene O, Adewuyi S, Amolegbe S-A, Akinremi A-C, Moronkola B-A, Salaudeen T (2018) Electrovalent chitosan functionalized methyl-orange/metal nanocomposites as chemosensors for toxic aqueous anions. Nano-Struct Nano-Objects 16:174–179. https://doi.org/10.1016/j.nanoso.2018.06.004

    Article  CAS  Google Scholar 

  • El-Naggar N-E, Hussein M-H, El-Sawah AA (2017) Bio-fabrication of silver nanoparticles by phycocyanin, characterization, in vitro anticancer activity against breast cancer cell line and in vivo cytotoxicity. Sci Rep 7(1):10844

    Article  Google Scholar 

  • Elshawy O-E, Helmy E-A, Rashed L-A (2016) Preparation. Characterization and in vitro evaluation of the antitumor activity of the biologically synthesized silver nanoparticles 5:149–166. https://doi.org/10.4236/anp.2016.52017

    Article  CAS  Google Scholar 

  • Fani S, Kamalidehghan B, Lo KM, Nigjeh SE, Keong YS, Dehghan F et al (2016) Anticancer activity of a monobenzyltin complex C1 against MDA-MB-231 cells through induction of Apoptosis and inhibition of breast cancer stem cells. Sci Rep 6:38992. https://doi.org/10.1038/srep38992

    Article  CAS  Google Scholar 

  • Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O, Castedo M, Kroemer G (2012) Molecular mechanisms of cisplatin resistance. Oncogene 31:1869–1883

    Article  CAS  Google Scholar 

  • Gogoi N, Chowdhury D (2014) In-situ and ex situ chitosan-silver nanoparticle composite: comparison of storage/release and catalytic properties. J Nanosci Nanotechnol 14:4147–4155. https://doi.org/10.1016/j.ijbiomac.2017.10.166

    Article  CAS  Google Scholar 

  • Govindan S, Nivethaa E, Saravanan R, Narayanan V, Stephen A (2012) Synthesis and characterization of chitosan–silver nanocomposite. Applied Nanoscience 2(3):299–303. https://doi.org/10.1007/s13204-012-0109-5

    Article  CAS  Google Scholar 

  • Green R-S (2016) Synthesis of Different sized antimicrobial silver nanoparticles using different parts of plants—a review. J ChemTech Res 9:197–208

    Google Scholar 

  • Gurunathan S, Park J-H, Han J-W, Kim J-H (2015) Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: targeting p53 for anticancer therapy. Int J Nanomedicine 10:4203–4223. https://doi.org/10.2147/IJN.S83953

    Article  CAS  Google Scholar 

  • Gurunathan S, Quasim M, Park C, Yoo H, Kim J-H, Hong K (2018) Cytotoxic potential and molecular pathway analysis of silver nanoparticles in human colon cancer cells HCT 116. Int JMol Sci 19(8):2269. https://doi.org/10.3390/ijms19082269

    Article  CAS  Google Scholar 

  • Han J-W, Gurunathan S, Jeong J-K, Choi Y-J, Kwon D-N, Park J-K, Kim J-H (2014) Oxidative stress mediated cytotoxicity of biologically synthesized silver nanoparticles in human lung epithelia. Nanoscale Res Lett 9:459–473

    Article  Google Scholar 

  • Ishida T (2017) Anticancer activities of silver ions in cancer and tumor cells and DNA damages by Ag + -DNA base-pairs reactions. MOJ Tumor Res 1:8–16. https://doi.org/10.15406/mojtr.2017.01.00003

    Article  Google Scholar 

  • Joshy KS, Sharma C-P, Kalarikkal N, Sandeep K, Thomas S, Pothen L-A (2016) Evaluation of in vitro cytotoxicity and cellular uptake efficiency of zidovudine-loaded solid lipid nanoparticles modified with Aloe Vera in glioma cells. Mater Sci Eng C Mater Biol Appl 66:40–50. https://doi.org/10.1016/j.msec.2016.03.031(Epub 2016 Mar 19)

    Article  CAS  Google Scholar 

  • Joshy K-S, Susan M-A, Snigdha S, Nandakumar K, Laly A-P, Sabu T (2018) Encapsulation of zidovudine in PF-68 coated alginate conjugate nanoparticles for anti-HIV drug delivery. Int J Biol Macromol 107(Pt A):929–937. https://doi.org/10.1016/j.ijbiomac.2017.09.078Epub 2017 Sep 20

    Article  CAS  Google Scholar 

  • Karagozlu M-Z (2014) Anticancer effects of chitin and chitosan derivatives. Adv Food Nutr Res 72:215–225. https://doi.org/10.1016/B978-0-12-800269-8.00012-9

    Article  CAS  Google Scholar 

  • Kaur P, Thakur R, Barnela M, Chopra M, Manuja A, Chaudhury A (2015) Synthesis, characterization and in vitro evaluation of cytotoxicity and antimicrobial activity of chitosan-metal nanocomposites. J Chem Technol Biotechnol 90(5):867–873

    Article  CAS  Google Scholar 

  • Kovacs D, Igas N, Keskeny C, Belteky P, Toth T, Gaspar R, Madarasz D, Razga Z, Konya Z, Boros I-M, Kiricsi M (2016) Silver nanoparticles defeat p 53—positive and p 53—negative osteosarcoma cells by triggering mitochondrial stress and apoptosis. Sci Rep 6:27902. https://doi.org/10.1038/srep27902

    Article  CAS  Google Scholar 

  • Kuppusamy P, Ichwan S-J, Al-Zikri P-N, Suriyah W-H, Soundharrajan I, Govindan N, Maniam G-P, Yusoff M-M (2016) In Vitro Anticancer activity of Au, Ag nanoparticles synthesized using Commelina nudiflora l. Aqueous extract against HCT-116 colon cancer cells. Biol Trace Elem Res 173:297–305

    Article  CAS  Google Scholar 

  • Lamkanfi M, Kanneganti T-D (2010) Caspase-7: a protease involved in apoptosis and inflammation. Int J Biochem Cell Biol 42:21–24. https://doi.org/10.1016/j.biocel.2009.09.013

    Article  CAS  Google Scholar 

  • Manuja A, Dilbaghi N, Kaur H, Saini R, Barnela M, Chopra M, Manuja BK, Kumar R, Kumar S, Riyesh T, Singh SK, Yadav SC (2018) Chitosan quinapyramine sulfate nanoparticles exhibit increased trypanocidal activity in mice. Nano-Struct Nano-Objects 16:193–199. https://doi.org/10.1016/j.nanoso.2018.05.001

    Article  CAS  Google Scholar 

  • Minz AP (2015) Evaluation of antioxidant and anticancer efficacy of chitosan-based nanoparticles. Thesis submitted to National Institute of Technology, Rourkela, pp 4–7

  • Mizrahy S, Peer D (2012) Polysaccharides as building blocks for nanotherapeutics. Chem Soc Rev 41:2623–2640

    Article  CAS  Google Scholar 

  • Moghaddam A-B, Namvar F, Moniri M, Tahir P-M, Azizi S, Mohamad R (2015) Nanoparticles biosynthesized by fungi and yeast: a review of their preparation, properties, and medical applications. Molecules 20:16540–16565. https://doi.org/10.3390/molecules200916540

    Article  CAS  Google Scholar 

  • Murad H, Hawat M, Ekhtiar A, Al-Japawe A, Abbas A, Darwish H, Sbenati O, Ghannam A (2016) Induction of G1-phase cell cycle arrest and apoptosis pathway in MDA-MB-231 human breast cancer cells by sulfated polysaccharide extracted from Laurencia papillose. Cancer Cell Int 16:39. https://doi.org/10.1186/s12935-016-0315-4

    Article  CAS  Google Scholar 

  • Pumiputavon K, Chaowasku T, Saenjum C, Osathanunkul M, Wungsintaweekul B, Chawansuntati K, Wipasa J, Lithanatudom P (2017) Cell cycle arrest and apoptosis induction by methanolic leaves extracts of four Annonaceae plants. BMC Complement Altern Med 17:294. https://doi.org/10.1186/s12906-017-1811-3

    Article  CAS  Google Scholar 

  • Rabea E-I, Badawy M-E, Steurbaut W, Rogge T-M, Stevens C-V, Smagghe G, Hofte M (2005) Fungicidal effect of chitosan derivatives containing an N-alkyl group on grey mould Botrytis cinerea and rice leaf blast Pyricularia grisea. Commun Agric Appl Biol Sci 70(3):219–223

    CAS  Google Scholar 

  • Rabik C-ADM (2007) Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treat Rev 33(1):9–23

    Article  CAS  Google Scholar 

  • Raghunandan D, Ravishankar B, Sharanbasava G, Mahesh D-B, Harsoor V, Yalagatti M-S, Bhagawanraju M, Venkataraman A (2011) Anti-cancer studies of noble metal nanoparticles synthesized using different plant extracts. Cancer Nanotechnol 2:57–65. https://doi.org/10.1007/s12645-011-0014-8

    Article  CAS  Google Scholar 

  • Raza A-Z, Anwar F (2017) Fabrication of chitosan nanoparticles and multi-response optimization in their application on cotton fabric by using a Taguchi approach. Nano-Struct Nano-Objects 10:80–90. https://doi.org/10.1016/J.NANOSO.2017.03.007

    Article  CAS  Google Scholar 

  • Rosslein M, Hirsch C, Kaiser J-P, Krug H-F, Wick P (2013) Comparability of in vitro tests for bioactive nanoparticles: a common assay to detect reactive oxygen species as an example. Int J Mol Sci 14:24320–24337. https://doi.org/10.3390/ijms141224320

    Article  CAS  Google Scholar 

  • Saratale R-G, Benelli G, Kumar G, Kim D-S, Saratale G-D (2017) Bio-fabrication of silver nanoparticles using the leaf extract of ancient herbal medicine, dandelion (Taraxacum officinale), evaluation of their antioxidant, anticancer potential, and antimicrobial activity against phytopathogens. Env Sci Pollut Res Int 2017:1–15

    Google Scholar 

  • Schönthal A-H, Pozarowski P, Darzynkiewicz Z (2004) Analysis of cell cycle by flow cytometry. Check Control Cancer 281:301–312. https://doi.org/10.1385/1-59259-811-0:301

    Article  Google Scholar 

  • Shahbazzadeh D, Ahari H, Motalebi A-A, Anvar A-A, Moaddab S, Asadi T, Shokrgozar M-A, Rahman-Nya J (2011) In vitro effect of Nanosilver toxicity on fibroblast and mesenchymal stem cell lines. Iran J Fish Sci 10:487–496

    Google Scholar 

  • Sledge G-W, Mamounas E-P, Hortobagyi G-N, Burstein H-J, Goodwin P-J, Wolf A-C (2014) Past, present, and future challenges in breast cancer treatment. J Clin Oncol 32:1979–1986

    Article  CAS  Google Scholar 

  • Srivastava A-N, Ahmad R, Khan M-A (2016) Evaluation and comparison of the in vitro cytotoxic activity of Withania somnifera methanolic and ethanolic extracts against MDA-MB-231 and Vero cell lines. Sci Pharm 84:41–59. https://doi.org/10.3797/scipharm.1507-13

    Article  CAS  Google Scholar 

  • Venkatesan J, Lee J-Y, Kang D-S, Anil S, Kim S-K, Shim M-S, Kim D-G (2017) Antimicrobial and anticancer activities of porous chitosan-alginate biosynthesized silver nanoparticles. Int J Biol Macromol 98:515–525. https://doi.org/10.1016/j.ijbiomac.2017.01.120

    Article  CAS  Google Scholar 

  • Vijayan S, Divya K, George T-K, Jisha M-S (2016a) Biogenic synthesis of silver nanoparticles using endophytic fungi Fusarium oxysporum isolated from Withania somnifera (L.), its antibacterial and cytotoxic activity. J Bionanoscience. https://doi.org/10.1166/jbns.2016.1390

    Article  Google Scholar 

  • Vijayan S, Koilaparambil D, George T-K, Shaikmoideen J-M (2016b) Antibacterial and cytotoxicity studies of silver nanoparticles synthesized by endophytic Fusarium solani isolated from Withania somnifera (L.). J Water Environ Nanotechnol 1:91–103. https://doi.org/10.7508/jwent.2016.02.003

    Article  Google Scholar 

  • Vijayan S, Koilaparambil D, John E-M, Jisha M-S (2016) Synthesis, Characterization and Comparative Antibacterial Effect of Silver Nanoparticles and Chitosan Conjugated Silver Nanoparticle. In: 8th international conference on chemical, agricultural, biological and environmental sciences (CABES-16) Dec. 30–31, 2016 Dubai (UAE), pp 46–49

  • Vijayarathna S, Sasidharan S (2012) Cytotoxicity of methanol extracts of Elaeis guineensis on MCF-7 and Vero cell lines. Asian Pac J Trop Biomed 2:826–829. https://doi.org/10.1016/S2221-1691(12)60237-8

    Article  Google Scholar 

  • Walter T-M, Justinraj S, Swathi K, Nandhini V-S, Devi S-G, Sanjana G, Merish S (2017) Phytochemical analysis and Invitro Anticancer study of a Siddha formulation KKPN against Cervical Cancer. Siddha Papers 12(3):2–8

    Google Scholar 

  • Wang C, Gao X, Chen Z, Chen Y, Chen H (2017) Preparation, characterization and application of polysaccharide-based metallic nanoparticles: a review. Polymers (Basel). https://doi.org/10.3390/polym9120689

    Article  Google Scholar 

  • Wu X (2015) Dual AO/EB staining to detect apoptosis in osteosarcoma cells compared with flow cytometry. Med Sci Monit Basic Res 21:15–20. https://doi.org/10.12659/MSMBR.893327

    Article  Google Scholar 

  • Yuan Y-G, Peng Q-L, Gurunathan S (2017) Silver nanoparticles enhance the apoptotic potential of gemcitabine in human ovarian cancer cells: combination therapy for effective cancer treatment. Int J Nanomedicine 12:6487–6502. https://doi.org/10.2147/IJN.S135482

    Article  CAS  Google Scholar 

  • Zhang H-Z, Kasibhatla S, Kuemmerle J, Kemnitzer W, Ollis-Mason K, Qiu L, Crogan-Grundy C, Tseng B, Drewe J, Cai S-X (2005) Discovery and structure-activity relationship of 3-aryl-5-aryl-1,2,4-oxadiazoles as a new series of apoptosis inducers and potential anticancer agents. Chem J Med 48:5215–5223

    Article  CAS  Google Scholar 

  • Zhang X-F, Liu Z-G, Shen W, Gurunathan S (2016a) Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci 17(9):1534

    Article  Google Scholar 

  • Zhang X-F, Shen W, Gurunathan S (2016b) b) Silver nanoparticle-cellular mediated responses in various cell lines: an in vitro model. Int J Mol Sci 17(10):1603. https://doi.org/10.3390/ijms17101603

    Article  CAS  Google Scholar 

  • Zhao X, Zhou L, Riaz Rajoka MS, Yan L, Jiang C, Shao D, Zhu J, Shi J, Huang Q, Yang H, Jin M (2017) Fungal silver nanoparticles: synthesis, application and challenges. Crit Rev Biotechnol. https://doi.org/10.1080/07388551.2017.1414141

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Mahatma Gandhi University (Section Order no: 529/A6/2/JRF2018-2019/Academic), Kottayam, Kerala, India. I also acknowledge Business Innovation and Incubation Centre (BIIC), Mahatma Gandhi University, for Patent Facilitation and Start-up award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Jisha.

Ethics declarations

Conflict of interest

Authors state that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 245 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijayan, S., Divya, K. & Jisha, M.S. In vitro anticancer evaluation of chitosan/biogenic silver nanoparticle conjugate on Si Ha and MDA MB cell lines. Appl Nanosci 10, 715–728 (2020). https://doi.org/10.1007/s13204-019-01151-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-019-01151-w

Keywords

Navigation