Skip to main content
Log in

Small core communities and high variability in bacteria associated with the introduced ascidian Styela plicata

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

The solitary ascidian Styela plicata is an introduced species in harbors of temperate and tropical oceans around the world. The invasive potential of this species has been studied through reproductive biology and population genetics but no study has yet examined the microbial diversity associated with this ascidian and its potential role in host ecology and invasiveness. Here, we used 16S rRNA gene tag pyrosequencing and transmission electron microscopy to characterize the abundance, diversity and host-specificity of bacteria associated with 3 Mediterranean individuals of S. plicata. Microscopy revealed low bacterial abundance in the inner tunic and their absence from gonad tissues, while pyrosequencing revealed a high diversity of S. plicata-associated bacteria (284 OTUs from 16 microbial phyla) in the inner tunic. The core symbiont community was small and consisted of 16 OTUs present in all S. plicata hosts. This core community included a recently described ascidian symbiont (Hasllibacter halocynthiae) and several known sponge and coral symbionts, including a strictly anaerobic Chloroflexi lineage. Most recovered bacterial OTUs (79.6 %) were present in single S. plicata individuals and statistical analyses of genetic diversity and community structure confirmed high variability of bacterial communities among host individuals. These results suggest that diverse and variable bacterial communities inhabit the tunic of S. plicata, including environmental and host-associated bacterial lineages that appear to be re-established each host generation. We hypothesize that bacterial communities in S. plicata are dynamic and have the potential to aid host acclimation to new habitats by establishing relationships with beneficial, locally sourced bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barros RC, Rocha RM, Pie MR (2009) Human-mediated global dispersion of Styela plicata (Tunicata, Ascidiacea). Aquat Invasions 4(1):45–57

    Google Scholar 

  • Behrendt L, Larkum AWD, Trampe E, Norman A, Sorensen SJ, Kühl M (2012) Microbial diversity of biofilm communities in microniches associated with the didemnid ascidian Lissoclinum patella. ISME J 6(6):1222–1237

    PubMed  CAS  Google Scholar 

  • Bellas J (2005) Toxicity assessment of the antifouling compound zinc pyrithione using early developmental stages of the ascidian Ciona intestinalis. Biofouling 21:289–296

    PubMed  CAS  Google Scholar 

  • Bellas J, Vázquez E, Beirasa R (2001) Toxicity of Hg, Cu, Cd, and Cr on early developmental stages of Ciona intestinalis (Chordata, Ascidiacea) with potential application in marine water quality assessment. Water Res 35:2905–2912

    PubMed  CAS  Google Scholar 

  • Bengtsson J, Eriksson KM, Hartmann M, Wang Z, Shenoy BD, Grelet G-A, Abarenkov K, Petri A, Rosenblad MA, Nilsson RH (2011) Metaxa: a software tool for automated detection and discrimination among ribosomal small subunit (12S/16S/18S) sequences of archaea, bacteria, eukaryotes, mitochondria, and chloroplasts in metagenomes and environmental sequencing datasets. Anton Leeuw 100:471–475

    Google Scholar 

  • Bennett CE, Marshall DJ (2005) The relative energetic costs of the larval period, larval swimming and metamorphosis for the ascidian Diplosoma listerianum. Mar Freshw Behav Physiol 38(1):21–30

    Google Scholar 

  • Blackburn TM, Pysek P, Bacher S, Carlton JT, Duncan RP, Jarosik V, Wilson JRU, Richardson DM (2011) A proposed unified framework for biological invasions. Trends Ecol Evol 26(7):333–339

    PubMed  Google Scholar 

  • Bontemps N, Bry D, López-Legentil S, Simon-Levert A, Long C, Banaigs B (2010) Structures and antimicrobial activities of pyridoacridine alkaloids isolated from different chromotypes of the ascidian Cystodytes dellechiajei. J Nat Prod 73:1044–1048

    PubMed  CAS  Google Scholar 

  • Bourque D, Davidson J, MacNair GN, Arsenault G, LeBlanc AR, Landry T, Miron G (2007) Reproduction and early life history of an invasive ascidian Styela clava Herdman in Prince Edward Island, Canada. J Exp Mar Biol Ecol 342:78–84

    Google Scholar 

  • Bull AT, Stach JEM (2007) Marine actinobacteria: new opportunities for natural product search and discovery. Trends Microbiol 15(11):491–499

    PubMed  CAS  Google Scholar 

  • Bullard SG, Lambert G, Carman MR, Byrnes J, Whitlatch RB, Ruiz G, Miller RJ, Harris L, Valentine PC, Collie JS, Pederson J, McNaught DC, Cohen AN, Asch RG, Dijkstra J, Heinonen K (2007) The colonial ascidian Didemnum sp. A: current distribution, basic biology and potential threat to marine communities of the northeast and west coasts of North America. J Exp Mar Biol Ecol 342:99–108

    Google Scholar 

  • Carpenter EJ, Foster RA (2002) Marine cyanobacterial symbioses. In: Rai AN, Bergman B, Rasmussen U (eds) Cyanobacteria in symbiosis. Kluwer Academic Publishers, Netherlands, pp 11–17

    Google Scholar 

  • Chao A (1984) Nonparametric estimation of the number of classes in a population. Scand J Stat 11:265–270

    Google Scholar 

  • Cohen AN, Harris L, Bingham BL, Carlton JT, Chapman JW, Lambert CC, Lambert G, Ljubenkov JC, Murray SN, Rao LC, Reardon K, Schwindt E (2005) Rapid Assessment Survey for exotic organisms in southern California bays and harbors, and abundance in port and non-port areas. Biol Invasions 7:995–1002

    Google Scholar 

  • Connell SD (2001) Urban structures as marine habitats: an experimental comparison of the composition and abundance of subtidal epibiota among pilings, pontoons and rocky reefs. Mar Environ Res 52:115–125

    PubMed  CAS  Google Scholar 

  • Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Duran C, Field M, Heled J, Kearse M, Markowitz S, Moir R, Stones-Havas S, Sturrock S, Thierer T, Wilson A (2012) Geneious v 5.5.4. Available from www.geneious.com

  • Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16):2194–2200

    PubMed  CAS  Google Scholar 

  • Erwin PM, López-Legentil S, Schuhmann PW (2010) The pharmaceutical value of marine biodiversity for anti-cancer drug discovery. Ecol Econ 70:445–451

    Google Scholar 

  • Erwin PM, Olson JB, Thacker RW (2011) Phylogenetic diversity, host-specificity and community profiling of sponge-associated bacteria in the northern Gulf of Mexico. PLoS One 6(11):e26806

    PubMed  CAS  Google Scholar 

  • Fan L, Reynolds D, Liu M, Stark M, Kjelleberg S, Webster NS, Thomas T (2012) Functional equivalence and evolutionary convergence in complex communities of microbial sponge symbionts. Proc Natl Acad Sci 109(27):1878–1887

    Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Google Scholar 

  • Good IJ (1953) The population frequencies of species and the estimation of population parameters. Biometrika 40(3/4):237–264

    Google Scholar 

  • Groepler W, Schuett C (2003) Bacterial community in the tunic matrix of a colonial ascidian Diplosoma migrans. Helgol Mar Res 57:139–143

    Google Scholar 

  • Hirose E (2000) Plant rake and algal pouch of the larvae in the tropical ascidian Diplosoma similis: an adaptation for vertical transmission of photosynthetic symbionts Prochloron sp. Zool Sci 17:233–240

    Google Scholar 

  • Hirose E, Fukuda T (2006) Vertical transmission of photosymbionts in the colonial ascidian Didemnum molle: the larval tunic prevents symbionts from attaching to the anterior part of larvae. Zool Sci 23(8):669–674

    PubMed  Google Scholar 

  • Hirose E, Maruyama T (2004) What are the benefits in the ascidian-Prochloron symbiosis? Endocytobiosis Cell Res 15:51–62

    Google Scholar 

  • Hirose E, Akahori M, Oka AT, Kurabayashi A (2004) Some Prochloron-bearing didemnid ascidians collected from the reef shores of Iriomote Island (Okinawa, Japan). Biol Mag Okinawa 42:7–15

    Google Scholar 

  • Hirose E, Neilan BA, Scmidt EW, Murakami A (2009) Enigmatic life and evolution of Prochloron and related cyanobacteria inhabiting colonial ascidians. In: Gault PM, Marler HJ (eds) Handbook on cyanobacteria. Bacteriology Research Developments Series. Nova Science Publishers, Inc., pp 161–189

  • Huse SM, Welch DM, Morrison HG, Sogin ML (2010) Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environ Microbiol 12(7):1889–1898

    PubMed  CAS  Google Scholar 

  • Kim SH, Yang HO, Kwon HC (2012) Hasllibacter halocynthiae gen. nov., sp. nov., a nutriacholic acid-producing bacterium isolated from the marine ascidian Halocynthia roretzi. Int J Syst Evol Microbiol 62:624–631

    PubMed  CAS  Google Scholar 

  • Kojima A, Hirose E (2010) Transfer of prokaryotic algal symbionts from a tropical ascidian (Lissoclinum punctatum) colony to its larvae. Zool Sci 27(2):124–127

    PubMed  Google Scholar 

  • Kojima A, Hirose E (2012) Transmission of cyanobacterial symbionts during embryogenesis in the coral reef ascidians Trididemnum nubilum and T. clinides (Didemnidae, Ascidiacea, Chordata). Biol Bull 222:63–73

    PubMed  Google Scholar 

  • Kühl M, Larkum AWD (2002) The microenvironment and photosynthetic performance of Prochloron sp. in symbiosis with didemnid ascidians. In: Seckbach J (ed) Cellular origin and life in extreme habitats. Vol. 3: Symbiosis, mechanisms and model systems. Kluwer Acad. Publ, Dordrecht, pp 273–290

    Google Scholar 

  • Lambert G (2001) A global overview of ascidian introductions and their possible impact on the endemic fauna. In: Sawada H, Tokosawa H, Lambert CC (eds) The biology of ascidians. Springer, Tokyo, pp 249–257

    Google Scholar 

  • Lambert G (2002) Non-indigenous ascidians in tropical waters. Pac Sci 56:291–298

    Google Scholar 

  • Lambert G (2007) Invasive sea squirts: a growing global problem. J Exp Mar Biol Ecol 342:3–4

    Google Scholar 

  • Lambert G (2009) Adventures of a sea squirt sleuth: unraveling the identity of Didemnum vexillum, a global ascidian invader. Aquat Invasions 4(1):5–28

    Google Scholar 

  • Lejeusne C, Bock DG, Therriault TW, MacIsaac HJ, Cristescu ME (2011) Comparative phylogeography of two colonial ascidians reveals contrasting invasion histories in North America. Biol Invasions 13:635–650

    Google Scholar 

  • Lewin RA (1978) Distribution of symbiotic didemnids associated with prochlorophytes. In: Proceedings of the International Symposium of marine biogeography and evolution in the Southern Hemisphere, Auckland, New Zealand. NZ DSIR Information Series 137, pp 365–369

  • Locke A (2009) A screening procedure for potential tunicate invaders of Atlantic Canada. Aquat Invasions 4(1):71–79

    Google Scholar 

  • López-Legentil S, Turon X, Planes S (2006a) Genetic structure of the star sea squirt, Botryllus schlosseri, introduced in southern European harbours. Mol Ecol 15:3957–3967

    PubMed  Google Scholar 

  • López-Legentil S, Turon X, Schupp P (2006b) Chemical and physical defenses against predators in Cystodytes (Ascidiacea). J Exp Mar Biol Ecol 332:27–36

    Google Scholar 

  • López-Legentil S, Song B, Bosch M, Pawlik JR, Turon X (2011) Cyanobacterial diversity and a new Acaryochloris-like symbiont from Bahamian sea-squirts. PLoS One 6(8):e23938

    PubMed  Google Scholar 

  • Lozupone CA, Hamady M, Kelley ST, Knight R (2007) Quantitative and qualitative β diversity Mmeasures lead to different insights into factors that structure microbial communities. Appl Environ Microbiol 73(5):1576–1585

    PubMed  CAS  Google Scholar 

  • Maldonado M (2007) Intergenerational transmission of symbiotic bacteria in oviparous and viviparous demosponges, with emphasis on intracytoplasmically-compartmented bacterial types. J Mar Biol Assoc UK 87:1701–1713

    Google Scholar 

  • Martin AP (2002) Pylogenetic approaches for describing and comparing the diversity of microbial communities. Appl Environ Microbiol 68(8):3673–3682

    PubMed  CAS  Google Scholar 

  • Martínez-García M, Díaz-Valdés M, Wanner G, Ramos-Esplà A, Antón J (2007) Microbial community associated with the colonial ascidian Cystodytes dellechiajei. Environ Microbiol 9(2):521–534

    PubMed  Google Scholar 

  • Martínez-García M, Stief P, Díaz-Valdés M, Wanner G, Ramos-Esplá A, Dubilier N, Antón J (2008) Ammonia-oxidizing Crenarchaeota and nitrification inside the tissue of a colonial ascidian. Environ Microbiol 11:2991–3001

    Google Scholar 

  • Martínez-García M, Díaz-Valdés M, Antón J (2010) Diversity of pufM genes, involved in aerobic anoxygenic photosynthesis, in the bacterial communities associated with colonial ascidians. FEMS Microbiol Ecol 71:387–398

    PubMed  Google Scholar 

  • Martínez-García M, Koblízek M, López-Legentil S, Antón J (2011) Epibiosis of oxygenic phototrophs containing chlorophylls a, b, c, and d on the colonial ascidian Cystodytes dellechiajei. Microb Ecol 61:13–19

    PubMed  Google Scholar 

  • McDonald J (2004) The invasive pest species Ciona intestinalis (Linnaeus, 1767) reported in a harbour in southern Western Australia. Mar Pollut Bull 49:868–870

    PubMed  CAS  Google Scholar 

  • McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, Andersen GL, Knight R, Hugenholtz P (2012) An improved GreenGenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 6:610–618

    PubMed  CAS  Google Scholar 

  • Moss C, Green DH, Pérez B, Velasco A, Henríquez R, McKenzie JD (2003) Intracellular bacteria associated with the ascidian Ecteinascidia turbinata: phylogenetic and in situ hybridisation analysis. Mar Biol 143:99–110

    CAS  Google Scholar 

  • Mouchka ME, Hewson I, Harvell CD (2010) Coral-associated bacterial asemblages: current knowledge and the potential for climate-driven impacts. Integr Comp Biol 50(4):662–674

    PubMed  Google Scholar 

  • Münchhoff J, Hirose E, Maruyama T, Sunairi M, Burns BP, Neilan BA (2007) Host specificity and phylogeography of the prochlorophyte Prochloron sp., an obligate symbiont in didemnid ascidians. Environ Microbiol 9(4):890–899

    PubMed  Google Scholar 

  • Naranjo SA, Carballo JL, Garcia-Gomez JC (1996) Effects of environmental stress on ascidian populations in Algeciras Bay (southern Spain). Possible marine bioindicators? Mar Ecol Prog Ser 144:119–131

    Google Scholar 

  • Pedrós-Alió C (2012) The rare bacterial biosphere. Annu Rev Mar Sci 4:449–466

    Google Scholar 

  • Pester M, Bittner N, Deevong P, Wagner M, Loy A (2010) A ‘rare biosphere’ microorganism contributes to sulfate reduction in a peatland. ISME J 4:1591–1602

    PubMed  CAS  Google Scholar 

  • Pineda MC (2012) A global wanderer: Biology, phylogeography and resilience of the introduced ascidian Styela plicata. PhD Thesis, University of Barcelona, Barcelona, pp 1–223

  • Pineda MC, López-Legentil S, Turon X (2011) The whereabouts of an ancient wanderer: global phylogeography of the solitary ascidian Styela plicata. PLoS One 6(9):e25495

    PubMed  CAS  Google Scholar 

  • Pineda MC, McQuaid CD, Turon X, López-Legentil S, Ordoñez V, Rius M (2012a) Tough adults, frail babies: an analysis of stress sensitivity across early life-history stages of widely introduced marine invertebrates. PLoS One 7(10):e46672

    PubMed  CAS  Google Scholar 

  • Pineda MC, Turon X, López-Legentil S (2012b) Stress levels over time in the introduced ascidian Styela plicata: the effects of temperature and salinity variations on hsp70 gene expression. Cell Stress Chaperones 17:435–444

    PubMed  CAS  Google Scholar 

  • Pineda MC, López-Legentil S, Turon X (in press) Year-round reproduction in a seasonal sea: Biological cycle of the introduced ascidian Styela plicata in the Western Mediterranean. Marine Biology. doi:10.1007/s00227-012-2082-7

  • Pisut DP, Pawlik JR (2002) Anti-predatory chemical defenses of ascidians: secondary metabolites or inorganic acids? J Exp Mar Biol Ecol 270:203–214

    CAS  Google Scholar 

  • Price MN, Dehal PS, Arkin AP (2010) FastTree 2—Approximately maximum-likelihood trees for large alignments. PLoS One 5(3):e9490

    PubMed  Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212

    PubMed  CAS  Google Scholar 

  • Rius M, Pascual M, Turon X (2008) Phylogeography of the widespread marine invader Microcosmus squamiger (Ascidiacea) reveals high genetic diversity of introduced populations and non-independent colonizations. Divers Distrib 14:818–828

    Google Scholar 

  • Rius M, Pineda MC, Turon X (2009) Population dynamics and life cycle of the introduced ascidian Microcosmus squamiger in the Mediterranean Sea. Biol Invasions 11:2181–2194

    Google Scholar 

  • Rius M, Turon X, Dias GM, Marshall DJ (2010) Propagule size effects across multiple life-history stages in a marine invertebrate. Funct Ecol 24:685–693

    Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: bayesian phylogenetic inference under mixed models. Bioinformatics 19(12):1572–1574

    PubMed  CAS  Google Scholar 

  • Sabbadin A (1957) Il ciclo biologico di Ciona intestinalis (L.), Molgula manhattensis (De Kay) e Styela plicata (Lesueur) nella laguna Veneta. Arch Oceanogr Limnol XI:1–29

    Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541

    PubMed  CAS  Google Scholar 

  • Schloss PD, Gevers D, Westcott SL (2011) Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS One 6(12):e27310

    PubMed  CAS  Google Scholar 

  • Schmidt EW, Nelson JT, Rasko DA, Sudek S, Eisen JA, Haygood MG, Ravel J (2005) Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella. Proc Natl Acad Sci 102(20):7315–7320

    PubMed  CAS  Google Scholar 

  • Schmitt S, Deines P, Behnam F, Wagner M, Taylor MW (2011) Chloroflexi bacteria are more diverse, abundant, and similar in high than in low microbial abundance sponges. FEMS Microbiol Ecol 78:497–510

    PubMed  CAS  Google Scholar 

  • Sciscioli M, Lepore E, Tursi A (1978) Relationship between Styela plicata (Les.) (Tunicata) settlement and spawning. Mem Biol Mar Oceanogr VIII(III):65–75

    Google Scholar 

  • Shade A, Handelsman J (2012) Beyond the Venn diagram: the hunt for a core microbiome. Environ Microbiol 14(1):4–12

    PubMed  CAS  Google Scholar 

  • Shenkar N, Loya Y (2008) The solitary ascidian Herdmania momus: native (Red Sea) versus non-indigenous (Mediterranean) populations. Biol Invasions 10:1431–1439

    Google Scholar 

  • Sims LL (1984) Osmorregulatory capabilities of three macrosympatric stolidobranch ascidians, Styela clava Herdman, S. plicata (Lesueur), and S. montereyensis (Dall). J Exp Biol Ecol 82:117–129

    Google Scholar 

  • Sjöstedt J, Koch-Schmidt P, Pontarp M, Canbäck B, Tunlid A, Lundberg P, Hagström A, Riemann L (2012) Recruitment of members from the rare biosphere of marine bacterioplankton communities after an environmental disturbance. Appl Environ Microbiol 78(5):1361–1369

    PubMed  Google Scholar 

  • Sogin ML, Morrison HG, Huber JL, Welch DM, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci 103(92):12115–12120

    PubMed  CAS  Google Scholar 

  • Stam WT, Boele-Bos SA, Stulp BK (1985) Genotypic relationships between Prochloron samples from different localities and hosts as determined by DNA-DNA reassociations. Arch Microbiol 142:340–341

    CAS  Google Scholar 

  • Stefaniak L, Zhang H, Gittenberger A, Smith K, Holsinger K, Lin S, Whitlatch RB (2012) Determining the native region of the putatively invasive ascidian Didemnum vexillum Kott, 2002. J Exp Mar Biol Ecol 422–423:64–71

    Google Scholar 

  • Stewart CN, Excoffier L (1996) Assessing population genetic structure and variability with RAPD data: application to Vaccinium macrocarpom (American Cranberry). J Evol Biol 9:153–171

    CAS  Google Scholar 

  • Svane IB, Young CM (1989) The ecology and behaviour of ascidian larvae. Oceanogr Mar Biol Annu Rev 27:45–90

    Google Scholar 

  • Tait E, Carman M, Sievert SM (2007) Phylogenetic divrsity of bacteria associated with ascidians in Eel Pond (Woods Hole, Massachusetts, USA). J Exp Mar Biol Ecol 342:138–146

    Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    PubMed  CAS  Google Scholar 

  • Tarjuelo I, López-Legentil S, Codina M, Turon X (2002) Defence mechanisms of adults and larvae of colonial ascidians: patterns of palatability and toxicity. Mar Ecol Prog Ser 235:103–115

    Google Scholar 

  • Tavaré S (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. In: Miura RM (ed) Some mathematical questions in biology—DNA sequence analysis. American Mathematics Society, Providence, pp 57–86

    Google Scholar 

  • Thacker RW, Freeman CJ (2012) Sponge-microbe symbioses: recent advances and new directions. Adv Mar Biol 62:57–112

    PubMed  Google Scholar 

  • Thiyagarajan V, Qian P-Y (2003) Effect of temperature, salinity and delayed attachment on development of the solitary ascidian Styela plicata (Lesueur). J Exp Mar Biol Ecol 290:133–146

    Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882

    PubMed  CAS  Google Scholar 

  • Tincu JA, Craig AG, Taylor SW (2000) Plicatamide: a lead to the biosynthetic origins of the tunichromes? Biochem Biophys Res Commun 270:421–424

    PubMed  CAS  Google Scholar 

  • Tincu JA, Menzel LP, Azimov R, Sands J, Hong T, Waring AJ, Taylor SW, Lehrer RI (2003) Plicatamide, an antimicrobial octapeptide from Styela plicata hemocytes. J Biol Chem 278(15):13546–13553

    PubMed  CAS  Google Scholar 

  • Turner SJ, Thrush SF, Cummings VJ, Hewitt JE, Wilkinson MR, Williamson RB, Lee DJ (1997) Chamges in epifaunal assemblages in response to marina operations and boating activities. Mar Environ Res 43(3):181–199

    CAS  Google Scholar 

  • Turon X, López-Legentil S, Banaigs B (2005) Cell types, microsymbionts, and pyridoacridine distribution in the tunic of three color morphs of the genus Cystodytes (Ascidiacea, Polycitoridae). Invertebr Biol 124(4):355–369

    Google Scholar 

  • Valero-Jiménez CA, Pérez-Portela R, López-Legentil S (2012) Characterization of novel microsatellite markers from the worldwide invasive ascidian Styela plicata. Conserv Genet Resour 4:559–561

    Google Scholar 

  • Vázquez E, Young CM (1996) Responses of compound ascidian larvae to haloclines. Mar Ecol Prog Ser 133:179–190

    Google Scholar 

  • Vázquez E, Young CM (2000) Effects of low salinity on metamorphosis in estuarine colonial ascidians. Invertebr Biol 119(4):433–444

    Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267

    PubMed  CAS  Google Scholar 

  • Webster NS, Taylor MW (2012) Marine sponges and their microbial symbionts: love and other relationships. Environ Microbiol 14(2):335–346

    PubMed  CAS  Google Scholar 

  • Webster NS, Taylor M, Behnam F, Lücker S, Rattei S, Whalan S, Horn M, Wagner M (2010) Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge symbionts. Environ Microbiol 12(8):2070–2082

    PubMed  CAS  Google Scholar 

  • Whitlatch RB, Bullard SG (2007) Introduction to the Proceedings of the 1st International Invasive Sea Squirt Conference. J Exp Mar Biol Ecol 342:1–2

    Google Scholar 

  • Wong NA, McClary D, Sewell MA (2011) The reproductive ecology of the invasive ascidian, Styela clava, in Auckland Harbour, New Zealand. Mar Biol 158:2775–2785

    Google Scholar 

  • Yamaguchi M (1975) Growth and reproductive cycles of the marine fouling ascidians Ciona intestinalis, Styela plicata, Botrylloides violaceus, and Leptoclinum mitsukurii at Aburatsubo-Moroiso Inlet (Central Japan). Mar Biol 29:253–259

    Google Scholar 

  • Yokobori S, Kurabayashi A, Neilan BA, Maruyama T, Hirose E (2006) Multiple origins of the ascidian-Prochloron symbiosis: molecular phylogeny of photosymbiotic and non-symbiotic colonial ascidians inferred from 18S rDNA sequences. Mol Phylogenet Evol 40(1):8–19

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the Marie Curie International Reintegration Grant FP7-PEOPLE-2010-RG 277038 within the 7th European Community Framework Program, the Spanish Government projects CTM2010-17755 and CTM2010-22218, and the Catalan Government grant 2009SGR-484 for Consolidated Research Groups.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanna López-Legentil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erwin, P.M., Carmen Pineda, M., Webster, N. et al. Small core communities and high variability in bacteria associated with the introduced ascidian Styela plicata . Symbiosis 59, 35–46 (2013). https://doi.org/10.1007/s13199-012-0204-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-012-0204-0

Keywords

Navigation