Skip to main content

Advertisement

Log in

Diversity of arbuscular mycorrhizal fungi in the rhizosphere of three host plants in the farming–pastoral zone, north China

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

The spatial diversity and distribution of AM fungi were investigated in three plots located in farming–pastoral zone, north China. The rhizospheres of Caragana korshinskii, Artemisia sphaerocephala and Salix psammophila were sampled and thirty AM fungal species belonging to five genera were isolated. The study demonstrated that AM fungal diversity and distribution differed significantly among the three host plants and the three studied plots. Spore density of AM fungi ranged between 2 and 22 spores per g−1 of soil and species richness between 8 and 23. Correlation coefficient analysis demonstrated that spore density was significantly and positively correlated with soil organic matter and available N (P < 0.01). Species richness was significantly and positively correlated with soil organic matter and available P (P < 0.01), but significantly and negatively correlated with soil pH (P < 0.01). Finally, the Shannon–Weiner index was significantly and positively correlated with soil organic matter (P < 0.05). In this farming–pastoral zone, Glomus reticulatum and G.melanosporum may be more adaptable to the arid conditions than other AM fungal species. This research into AM fungal diversity may lead to exploitation of AM fungi for the mitigation of soil erosion and desertification using mycorrhizal plants, such as C.korshinskii, A.sphaerocephala and S. psammophila. The results of this study support the conclusion that diversity and distribution of AM fungi might be useful to monitor desertification and soil degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Al-Raddad AM (1993) Distribution of different Glomus species in rainfed areas in Jordan. Dirasat-Ser B Pure Appl Sci 20:165–182

    Google Scholar 

  • Atul-Nayyar A, Hamel C, Hanson K, Germida J (2009) The arbuscular mycorrhizal symbiosis links N mineralization to plant demand. Mycorrhiza 19(4):239–246

    Article  PubMed  CAS  Google Scholar 

  • Bai CM, He XL, Tang HL, Shan BQ, Zhao LL (2009) Spatial distribution of arbuscular mycorrhizal fungi, glomalin and soil enzymes under the canopy of Astragalus adsurgens Pall. in the Mu Us sandland, China. Soil Biol Biochem 41:941–947

    Article  CAS  Google Scholar 

  • Batten KM, Scow KM, Davies KF, Harrison SP (2006) Two invasive plants alter soil microbial community composition in serpentine grasslands. Biol Invasions 8:217–230

    Article  Google Scholar 

  • Belyea LR, Lancaster J (1999) Assembly rules within a contingent ecology. Oikos 86(3):402–416

    Article  Google Scholar 

  • Benbrahim KF, Ismaili M (2002) Interactions in the symbiosis of Acacia saligna with Glomus mosseae and Rhizobium in a fumigated and unfumigated soil. Arid Land Res Manag 16:365–376

    Article  CAS  Google Scholar 

  • Bohrer KE, Friese CF, Amon JP (2004) Seasonal dynamics of arbuscular mycorrhizal fungi in differing wetland habitats. Mycorrhiza 14:329–337

    Article  PubMed  Google Scholar 

  • Driver JD, Holben WE, Rillig MC (2005) Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi. Soil Biol Biochem 37:101–106

    Article  CAS  Google Scholar 

  • Eom AH, Hartnett DC, Wilson GWT (2000) Host plant species effects on arbuscular mycorrhizal fungal communities in tallgrass prairie. Oecologia 122(3):435–444

    Article  Google Scholar 

  • Gavito ME, Olsson PA, Rouhier H, Medina-Peñafiel A, Jakobsen I, Bago A, Azcón-Aguilar C (2005) Temperature constraints on the growth and functioning of root organ cultures with arbuscular mycorrhizal fungi. New Phytol 168:179–188

    Article  PubMed  CAS  Google Scholar 

  • Gerdemann JW, Nicolson TH (1963) Spores of mycorrhizal endogone species extracted from soil by wet sieving and decanting. Trans Br Mycol Soc 46:235–244

    Article  Google Scholar 

  • He XL, Mouratov S, Steinberger Y (2002) Spatial distribution and colonization of arbuscular mycorrhizal fungi under the canopies of desert halophytes. Arid Land Res Manag 16:149–160

    Article  Google Scholar 

  • He XL, Liu T, An XJ, Zhao LL (2009) Effects of AM fungi on the growth and drought resistance of Caragana korshinskii under water stress conditions. Acta Ecol Sin 29(1):47–52

    Google Scholar 

  • He XL, Li YP, Zhao LL (2010) Dynamics of arbuscular mycorrhizal fungi and glomalin in the rhizosphere of Artemisia ordosica Krasch. in Mu Us sandland, China. Soil Biol Biochem 42:1313–1319

    Article  CAS  Google Scholar 

  • He XL, Chen C, He B (2011) Spatial distribution of arbuscular mycorrhizal fungi and glomalin of Hippophae rhamnoides L. in farming-pastoral zone from the two northern provinces of China. Acta Ecol Sin 31:1653–1661

    Google Scholar 

  • Huang Z, Gutterman Y (2000) Comparison of germination strategies of Artemisia ordosica with its two congeners from deserts of China and Israel. Acta Bot Sin 42:71–80

    Google Scholar 

  • Ianson DC, Allen MF (1986) The effects of soil texture on extraction of vesicular arbuscular mycorrhizal spores from arid soils. Mycologia 78:164–168

    Article  Google Scholar 

  • Jeffrey DC, Peter GA, Rebecca BW (2003) The role of phosphorus availability in the response of soil nitrogen cycling, understory vegetation and arbuscular mycorrhizal inoculum potential to elevated nitrogen input. Water Air Soil Pollut 147:141–161

    Article  Google Scholar 

  • Jefwa JM, Sinclair R, Maghembe JA (2006) Diversity of glomale mycorrhizal fungi in maize / sesbania intercrops and maize monocrop systems in southern Malawi. Agroforest Syst 67:107–114

    Article  Google Scholar 

  • Kennedy AC, Smith KL (1995) Soil microbial diversity and the sustainability of agriculture soils. Plant Soil 170:75–86

    Article  CAS  Google Scholar 

  • Klironomos JN (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417(6884):67–70

    Article  PubMed  CAS  Google Scholar 

  • Klironomos JN (2003) Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84(9):2292–2301

    Article  Google Scholar 

  • Li YP, He XL, Zhao LL (2010) Tempo-spatial dynamics of arbuscular mycorrhizal fungi under clonal plant Psammochloa villosa Trin. Bor in Mu Us sandland. Eur J Soil Biol 46:295–301

    Article  Google Scholar 

  • Luis MC, Patricia MC, Ronald JR, Amelia M (2003) Spatial variability of arbuscular mycorrhizal fungal spores in two natural plant communities. Plant Soil 251(2):227–236

    Article  Google Scholar 

  • Martínez-García LB, Armas C, Miranda JD, Padilla FM, Pugnaire FI (2011) Shrubs influence arbuscular mycorrhizal fungi communities in a semi-arid environment. Soil Biol Biochem 43(3):682–689

    Article  Google Scholar 

  • Masahide Y, Shiho I, Koji I (2009) Community of arbuscular mycorrhizal fungi in drought-resistant plants, Moringa spp., in semiarid regions in Madagascar and Uganda. Mycoscience 50:100–105

    Article  Google Scholar 

  • Michelle SS, David PJ (2004) Phosphorus and intraspecific density alter plant responses to arbuscular mycorrhizas. Plant Soil 264:335–348

    Article  Google Scholar 

  • Mozafar S, Mahlagha G, Hassan E (2007) Improved growth of salinity-stressed soybean after inoculation with salt pre-treated mycorrhizal fungi. J Plant Physiol 164:1144–1151

    Article  Google Scholar 

  • Muthukumar T, Udaiyan K (2002) Growth and yield of cowpea as influenced by changes in arbuscular mycorrhiza in response to organic manuring. J Agron Crop Sci 188:123–132

    Article  Google Scholar 

  • Natasha TH, Christine VH (2010) Order of plant host establishment alters the composition of arbuscular mycorrhizal communities. Ecology 91(8):2333–2343

    Article  Google Scholar 

  • Nichols KA, Wright SF (2004) Contributions of soil fungi to organic matter in agricultural soils. In: Magdoff F, Weil R (eds) Functions and management of soil organic matter in agroecosystems. CRC, Washington, pp 179–198

    Google Scholar 

  • Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Circular. U.S. Department of Agriculture, Washington, p 939

    Google Scholar 

  • Pande M, Tarafdar JC (2004) Arbuscular mycorrhizal fungal diversity in neem-based agroforestry systems in Rajasthan. Appl Soil Ecol 26:233–241

    Article  Google Scholar 

  • Panwar J, Tarafdar JC (2006) Arbuscular mycorrhizal fungal dynamics under Mitragyna parvifolia (Roxb) Korth. in thar desert. Appl Soil Ecol 34:200–208

    Article  Google Scholar 

  • Piotrowski JS, Morford SL, Rillig MC (2008) Inhibition of colonization by a native arbuscular mycorrhizal fungal community via Populus trichocarpa litter, litter extract, and soluble phenolic compounds. Soil Biol Biochem 40:709–717

    Article  CAS  Google Scholar 

  • Qian WH, He XL (2009) Diversity of arbuscular mycorrhizal fungi associated with a desert plant Artemisia ordosica. Biodivers Sci 17:506–511

    CAS  Google Scholar 

  • Redecker D, Morton JB, Bruns TD (2000) Ancestral lineages of arbuscular mycorrhizal fungi (Glomales). Mol Phylogenet Evol 14:276–284

    Article  PubMed  CAS  Google Scholar 

  • Rowell DL (1994) Soil science: methods and applications. Longman Group U.K. Ltd, London

    Google Scholar 

  • Scervino JM, Gottlieb A, Silvani VA, Pérgola M, Fernández L, Godeas AM (2009) Exudates of dark septate endophyte (DSE) modulate the development of the arbuscular mycorrhizal fungus (AMF) Gigaspora rosea. Soil Biol Biochem 41:1753–1756

    Article  CAS  Google Scholar 

  • Scheublin TR, van Logtestijn RSP, van der Heijden MGA (2007) Presence and identity of arbuscular mycorrhizal fungi influence competitive interactions between plant species. J Ecol 95(4):631–638

    Article  CAS  Google Scholar 

  • Shi ZY, Feng G, Christie P, Li XL (2006) Arbuscular mycorrhizal status of spring ephemerals in the desert ecosystem of Junggar Basin, China. Mycorrhiza 16:269–275

    Article  PubMed  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, Cambridge

    Google Scholar 

  • Stutz JC, Copeman R, Martin CA, Morton JB (2000) Patterns of species composition and distribution of arbuscular mycorrhizal fungi in arid regions of southwestern North America and Namibia, Africa. Can J Bot 78:237–245

    Google Scholar 

  • Tawaraya K, Hashimoto K, Wagatsuma T (1998) Effect of root exudate fractions from P-deficient and P-sufficient onion plants on root colonization by the arbuscular mycorrhizal fungus Gigaspora margarita. Mycorrhiza 8:67–70

    Article  CAS  Google Scholar 

  • Ter Braak C, Smilauer P (2002) Canoco reference manual and Canodraw for Windows User’s Guide: software for canonical community ordination, 45th edn. Microcomputer Power, Ithaca

    Google Scholar 

  • Titus JH, Nowak RS, Smith SD (2002) Soil resource heterogeneity in the Mojave desert. J Arid Environ 52:269–292

    Article  Google Scholar 

  • Torrecillas E, Alguacil MM, Roldán A (2012) Differences in the AMF diversity in soil and roots between two annual and perennial gramineous plants co-occurring in a Mediterranean, semiarid. Soil Biol Biochem 43(3):682–689

    Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396(6706):69–72

    Article  Google Scholar 

  • van der Heijden MGA, Streitwolf-Engel R, Riedl R, Siegrist S, Neudecker A, Ineichen K, Boller T, Wiemken A, Sanders IR (2006) The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytol 172(26):739–752

    Article  PubMed  Google Scholar 

  • Yang J, He XL, Zhao LL (2011) Species diversity of arbuscular mycorrhizal fungi in the rhizosphere of Salix psammophila in Inner Mongolia desert. Biodivers Sci 19:377–385

    Google Scholar 

  • Zhang MQ, Wang YS, Zhang C, Huang L (1994) The ecological distribution characteristics of some genera and species of VAM fungi in Northern China. Mycosystema 13:166–172

    Google Scholar 

  • Zhang HQ, Tang M, Chen H, Tian ZQ, Xue YQ, Feng Y (2009) Communities of arbuscular mycorrhizal fungi and bacteria in the rhizosphere of Caragana korshinkii and Hippophae rhamnoides in Zhifanggou watershed. Plant Soil 326:415–424

    Article  Google Scholar 

  • Zhao JL, He XL (2007) Arbuscular mycorrhizal fungi associated with the clonal plants in MuUs sandland of China. Progr Nat Sci 17(11):1296–1302

    Google Scholar 

  • Zhu YG, Miller RM (2003) Carbon cycling by arbuscular mycorrhizal fungi in soil-plant systems. Trends Plant Sci 8:407–409

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the National Natural Science Foundation of China (Project 30670371, 40471637, 31170488).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueli He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Z., He, X., Guo, H. et al. Diversity of arbuscular mycorrhizal fungi in the rhizosphere of three host plants in the farming–pastoral zone, north China. Symbiosis 57, 149–160 (2012). https://doi.org/10.1007/s13199-012-0186-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-012-0186-y

Keywords

Navigation