Skip to main content
Log in

Communities of arbuscular mycorrhizal fungi and bacteria in the rhizosphere of Caragana korshinkii and Hippophae rhamnoides in Zhifanggou watershed

  • Regular Articles
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

The process of ecological restoration and reconstruction in Zhifanggou watershed forms a special ecosystem on the Loess Plateau. Little is known about the communities of arbuscular mycorrhizal fungi (AMF) and bacteria in this ecosystem. The aim of this study was to analyze the communities of AMF and bacteria, and their relationship in the rhizosphere of Caragana korshinkii and Hippophae rhamnoides in Zhifanggou watershed. Soil samples were collected from Zhifanggou watershed. The communities of AMF and bacteria were analyzed by using nested PCR of rDNA fragments and denaturing gradient gel electrophoresis (DGGE). Diversity analysis revealed that the bacterial Shannon diversity index was higher than that of AMF, and the AMF and bacterial Shannon diversity index in the rhizosphere of H. rhamnoides was higher than that of C. korshinkii. Principal component analysis (PCA) revealed that host plant had a significant influence on the bacterial community structure, but no strict specificity with AMF. Correlation analysis showed that the AMF communities had a significant positive correlation with the bacterial communities, and that indicated a significant effect of AMF on bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AMF:

arbuscular mycorrhizal fungi

C:

Caragana korshinkii

DGGE:

denaturing gradient gel electrophoresis

H:

Hippophae rhamnoides

PCA:

principal component analysis

PCR:

polymerase chain reaction

References

  • Alonso LM, Kleiner D, Ortega E (2008) Spores of the mycorrhizal fungus Glomus mosseae host yeasts that solubilize phosphate and accumulate polyphosphates. Mycorrhiza 18:197–204. doi:10.1007/s00572-008-0172-7

    Article  PubMed  Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  PubMed  Google Scholar 

  • Andrade G, Linderman RG, Bethlenfalvay GJ (1998) Bacterial associations with the mycorrhizosphere and hyphosphere of the arbuscular mycorrhizal fungus Glomus mosseae. Plant Soil 202:79–87. doi:10.1023/A:1004397222241

    Article  CAS  Google Scholar 

  • Bakhtiar Y, Miller D, Cavagnaro TR, Smith S (2001) Interactions between two arbuscular mycorrhizal fungi and fungivorous nematodes and control of the nematode with fenamifos. Appl Soil Ecol 17:107–117. doi:10.1016/S0929-1393(01)00129-9

    Article  Google Scholar 

  • Börstler B, Renker C, Kahmen A, Buscot F (2006) Species composition of arbuscular mycorrhizal fungi in two mountain meadows with differing management types and levels of plant biodiversity. Biol Fertil Soils 42:286–298. doi:10.1007/s00374-005-0026-9

    Article  Google Scholar 

  • Carlsen SCK, Understrup A, Fomsgaard IS, Mortensen AG, Ravnskov S (2008) Flavonoids in roots of white clover: interaction of arbuscular mycorrhizal fungi and a pathogenic fungus. Plant Soil 302:33–43. doi:10.1007/s11104-007-9452-9

    Article  CAS  Google Scholar 

  • Cavagnaro TR, Jackson LE, Scow KM, Hristova KR (2007) Effects of arbuscular mycorrhizas on ammonia oxidizing bacteria in an organic farm soil. Microb Ecol 54:618–626. doi:10.1007/s00248-007-9212-7

    Article  CAS  PubMed  Google Scholar 

  • Chandanie WA, Kubota M, Hyakumachi M (2005) Interaction between arbuscular mycorrhizal fungus Glomus mosseae and plant growth promoting fungus Phoma sp. on their root colonization and growth promotion of cucumber (Cucumis sativus L.). Mycoscience 46:201–204. doi:10.1007/s10267-005-0230-3

    Article  Google Scholar 

  • Clapp JP, Young JPW, Merryweather JW, Fitter AH (1995) Diversity of fungal symbionts in arbuscular mycorrhizas from a natural community. New Phytol 130:259–265. doi:10.1111/j.1469-8137.1995.tb03047.x

    Article  Google Scholar 

  • Clegg S, Gobran GR (1997) Rhizospheric P and K in forest soil manipulated with ammonium sulfate water. Can J Soil Sci 77:525–533

    Google Scholar 

  • Cornejo P, Azcón-Aguilar C, Barea JM, Ferrol N (2004) Temporal temperature gradient gel electrophoresis (TTGE) as a tool for the characterization of arbuscular mycorrhizal fungi. FEMS Microbiol Lett 241:265–270. doi:10.1016/j.femsle.2004.10.030

    Article  CAS  PubMed  Google Scholar 

  • De Souza FA, Berbara RLL (1999) Ontogeny of Glomus clarum in Ri T-DNA transformed roots. Mycologia 91:343–350. doi:10.2307/3761379

    Article  Google Scholar 

  • Docherty KM, Young KC, Maurice PA, Bridgham SD (2006) Dissolved organic matter concentration and quality influences upon structure and function of freshwater microbial communities. Microb Ecol 52:378–388. doi:10.1007/s00248-006-9089-x

    Article  CAS  PubMed  Google Scholar 

  • Douhan GW, Petersen C, Bledsoe CS, Rizzo DM (2005) Contrasting root associated fungi of three common oak-woodland plant species based on molecular identification: host specificity or non-specific amplification? Mycorrhiza 15:365–372. doi:10.1007/s00572-004-0341-2

    Article  CAS  PubMed  Google Scholar 

  • Federici E, Leonardi V, Giubilei MA, Quaratino D, Spaccapelo R, D’Annibale A, Petruccioli M (2007) Addition of allochthonous fungi to a historically contaminated soil affects both remediation efficiency and bacterial diversity. Appl Microbiol Biotechnol 77:203–211. doi:10.1007/s00253-007-1143-1

    Article  CAS  PubMed  Google Scholar 

  • Gamalero E, Trotta A, Massa N, Copetta A, Martinotti MG, Berta G (2004) Impact of two fluorescent pseudomonads and an arbuscular mycorrhizal fungus on tomato plant growth, root architecture and P acquisition. Mycorrhiza 14:185–192. doi:10.1007/s00572-003-0256-3

    Article  PubMed  Google Scholar 

  • Helgason T, Daniell TJ, Husband R, Fitter AH, Young JP (1998) Ploughing up the wood-wide web. Nature 394:431. doi:10.1038/28764

    Article  CAS  PubMed  Google Scholar 

  • Ishii S, Loynachan TE (2004) Rapid and reliable DNA extraction techniques from trypan-blue-stained mycorrhizal roots: comparison of two methods. Mycorrhiza 14:271–275. doi:10.1007/s00572-004-0316-3

    Article  CAS  PubMed  Google Scholar 

  • Koide RT, Mosse B (2004) A history of research on arbuscular mycorrhiza. Mycorrhiza 14:145–163. doi:10.1007/s00572-004-0307-4

    Article  PubMed  Google Scholar 

  • Kowalchuk GA, Gerards S, Woldendorp JW (1997) Detection and characterization of fungal infections of Ammophila arenaria (marram grass) roots by denaturing gradient gel electrophoresis of specifically amplified 18S rDNA. Appl Environ Microbiol 63:3858–3865

    CAS  PubMed  Google Scholar 

  • Kowalchuk GA, De Souza FA, van Veen JA (2002) Community analysis of arbuscular mycorrhizal fungi associated with Ammophila arenaria in Dutch coastal sand dunes. Mol Ecol 11:571–581. doi:10.1046/j.0962-1083.2001.01457.x

    Article  CAS  PubMed  Google Scholar 

  • Lei J, Zhou Y, Ding J, Wand L, Yu J (2005) Effect of continuous cropping of different vegetables on DNA polymorphorism of soil bacterial. Scientia Agric Sin 38:2076–2083 in Chinese

    Google Scholar 

  • Liang Z, Drijber RA, Lee DJ, Dwiekat IM, Harris SD, Wedin DA (2008) A DGGE-cloning method to characterize arbuscular mycorrhizal community structure in soil. Soil Biol Biochem 40:956–966. doi:10.1016/j.soilbio.2007.11.016

    Article  CAS  Google Scholar 

  • Liu Y, He L, An L, Thorunn H, Feng H (2009) Arbuscular mycorrhizal dynamics in a chronosequence of Caragana korshinskii plantations. FEMS Microbiol Ecol 67:81–92. doi:10.1111/j.1574-6941.2008.00597.x

    Article  CAS  PubMed  Google Scholar 

  • Long LK, Yang SZ, Yao Q (2005) DNA extraction from arbuscular mycorrhizal fungi and analysis by PCR-denaturing gradient gel electrophoresis. Mycosystema 24:564–569 in Chinese

    CAS  Google Scholar 

  • Long LK, Zhu HH, Yao Q, Ai YC (2008) Analysis of bacterial communities associated with spores of Gigaspora margarita and Gigaspora rosea. Plant Soil 310:1–9. doi:10.1007/s11104-008-9611-7

    Article  CAS  Google Scholar 

  • Ma WK, Siciliano SD, Germida JJ (2005) A PCR-DGGE method for detecting arbuscular mycorrhizal fungi in cultivated soils. Soil Biol Biochem 37:1589–1597. doi:10.1016/j.soilbio.2005.01.020

    Article  CAS  Google Scholar 

  • Mamatha G, Bagyaraj DJ, Jaganath S (2002) Inoculation of field-established mulberry and papaya with arbuscular mycorrhizal fungi and a mycorrhiza helper bacterium. Mycorrhiza 12:313–316. doi:10.1007/s00572-002-0200-y

    Article  CAS  PubMed  Google Scholar 

  • Marschner P, Baumann K (2003) Changes in bacterial community structure induced by mycorrhizal colonisation in split-root maize. Plant Soil 251:279–289. doi:10.1023/A:1023034825871

    Article  CAS  Google Scholar 

  • Marulanda-Aguirre A, Azcón R, Ruiz-Lozano JM, Aroca R (2008) Differential effects of a Bacillus megaterium strain on Lactuca sativa plant growth depending on the origin of arbuscular mycorrhizal fungus coinoculated: physiologic and biochemical traits. J Plant Growth Regul 27:10–18. doi:10.1007/s00344-007-9024-5

    Article  CAS  Google Scholar 

  • Maukonen J, Saarela M, Raaska J (2006) Desulfovibrionales-related bacteria in a paper mill environment as detected with molecular techniques and culture. J Ind Microbiol Biotechnol 33:45–54. doi:10.1007/s10295-005-0047-2

    Article  CAS  PubMed  Google Scholar 

  • Miniaci C, Bunge M, Duc L, Edward I, Bürgmann H, Zeyer J (2007) Effects of pioneering plants on the microbial structures and functions in a glacier forefield. Biol Fertil Soils 44:289–297. doi:10.1007/s00374-007-0203-0

    Article  Google Scholar 

  • Muyzer G, Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek 73:127–141. doi:10.1023/A:1000669317571

    Article  CAS  PubMed  Google Scholar 

  • Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  PubMed  Google Scholar 

  • Ogilvie LA, Hirsch PR, Johnston AWB (2008) Bacterial diversity of the Broadbalk ‘classic’ winter wheat experiment in relation to long-term fertilizer inputs. Microb Ecol 56:525–537. doi:10.1007/s00248-008-9372-0

    Article  PubMed  Google Scholar 

  • Oliveira RS, Castro PML, Dodd JC, Vosátka M (2005) Synergistic effect of Glomus intraradices and Frankia spp. on the growth and stress recovery of Alnus glutinosa in an alkaline anthropogenic sediment. Chemosphere 60:1462–1470. doi:10.1016/j.chemosphere.2005.01.038

    Article  CAS  PubMed  Google Scholar 

  • Öpik M, Moora M, Liira J, Koljalg U, Zobel M, Sen R (2003) Divergent arbuscular mycorrhizal fungal communities colonize roots of Pulsatilla spp. in boreal Scots pine forest and grassland soils. New Phytol 160:581–593. doi:10.1046/j.1469-8137.2003.00917.x

    Article  Google Scholar 

  • Park HI, Choi YJ, Pak D (2008) Autohydrogenotrophic denitrifying microbial community in a glass beads biofilm reactor. Biotechnol Lett 27:949–953. doi:10.1007/s10529-005-7654-x

    Article  Google Scholar 

  • Roesti D, Gaur R, Johri BN, Imfeld G, Sharma S, Kawaljeet K, Aragno M (2006) Plant growth stage, fertiliser management and bio-inoculation of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria affect the rhizobacteria community structure in rain-fed wheat fields. Soil Biol Biochem 38:1111–1120. doi:10.1016/j.soilbio.2005.09.010

    Article  CAS  Google Scholar 

  • Roldán A, Diaz-vivancos P, Hernandez JA, Carrasco L, Caravaca F (2008) Superoxide dismutase and total peroxidase activities in relation to drought recovery performance of mycorrhizal shrub seedlings grown in an amended semiarid soil. J Plant Physiol 165:715–722. doi:10.1016/j.jplph.2007.02.007

    Article  PubMed  Google Scholar 

  • Roose-Amsaleg CL, Garnier-Sillam E, Harry M (2001) Extraction and purification of microbial DNA from soil and sediment samples. Appl Soil Ecol 18:47–60. doi:10.1016/S0929-1393(01)00149-4

    Article  Google Scholar 

  • Sambrook J, Fritsch FE, Maniatis T (2001) Molecular cloning: a laboratory manual. Cold Spring Harber Laboratory, Cold Spring Harber, NY

    Google Scholar 

  • Schoenfeld J, Gelsomino A, van Overbeek LS, Gorissen A, Smalla K, van Elsas JD (2003) Effects of compost addition and simulated solarisation on the fate of Ralstonia solanacearum biovar and indigenous bacteria in soil. FEMS Microbiol Ecol 43:63–74. doi:10.1111/j.1574-6941.2003.tb01046.x

    Article  Google Scholar 

  • Schwarzott D, Schüßler A (2001) A simple and reliable method for ssu RNA gene DNA extraction, amplification and cloning from single AM fungal spore. Mycorrhiza 10:203–207. doi:10.1007/PL00009996

    Article  CAS  Google Scholar 

  • Sheng M, Tang M, Chen H, Yang BW, Zhang FF, Huang YH (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18:287–296. doi:10.1007/s00572-008-0180-7

    Article  CAS  PubMed  Google Scholar 

  • Simon L, Lalonde M, Bruns TD (1992) Specific amplification of l8S fungal ribosomal genes from vesicular arbuscular endomycorrhizai fungi colonizing roots. Appl Environ Microbiol 58:291–295

    CAS  PubMed  Google Scholar 

  • Singh BK, Nunan N, Ridgway KP, McNicol J, Young JP, Daniell TJ, Prosser JI, Millard P (2008) Relationship between assemblages of mycorrhizal fungi and bacteria on grass roots. Environ Microbiol 10:534–541. doi:10.1111/j.1462-2920.2007.01474.x

    Article  CAS  PubMed  Google Scholar 

  • Sonjak S, Beguiristain T, Leyval C, Regvar M (2008) Temporal temperature gradient gel electrophoresis (TTGE) analysis of arbuscular mycorrhizal fungi associated with selected plants from saline and metal polluted environments. Plant Soil 314:25–34. doi:10.1007/s11104-008-9702-5

    Article  Google Scholar 

  • Tebbe CC, Vahjen W (1993) Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast. Appl Environ Microbiol 59:2657–2665

    CAS  PubMed  Google Scholar 

  • Teng Y, Luo YM, Zhao XW, Li ZG, Song J, Wu LH (2004) Rapid extraction and purification of DNA in farmland soils contaminated with mixed heavy metals for PCR-DGGE analysis. Acta Pedologica Sin 41:343–347 in Chinese

    CAS  Google Scholar 

  • Tsimilli-Michael M, Eggenberg P, Biro B, Köves-Pechy K, Vörös I, Strasser RJ (2000) Synergistic and antagonistic effects of arbuscular mycorrhizal fungi and Azospirillum and Rhizobium nitrogen-fixers on the photosynthetic activity of alfalfa, probed by the polyphasic chlorophyll a fluorescence transient O-J-I-P. Appl Soil Ecol 15:169–182. doi:10.1016/S0929-1393(00)00093-7

    Article  Google Scholar 

  • Wang J, Ma T, Zhao L, Lv J, Li G, Liang F, Liu R (2008) PCR-DGGE method for analyzing the bacterial community in a high temperature petroleum reservoir. World J Microbiol Biotechnol 24:1981–1987. doi:10.1007/s11274-008-9694-6

    Article  CAS  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    CAS  PubMed  Google Scholar 

  • Xavier LJC, Germida JJ (2002) Response of lentil under controlled conditions to co-inoculation with arbuscular mycorrhizal fungi and rhizobia varying in efficacy. Soil Biol Biochem 34:181–188. doi:10.1016/S0038-0717(01)00165-1

    Article  CAS  Google Scholar 

  • Xu P, Peter C, Liu Y, Zhang J, Li X (2008) The arbuscular mycorrhizal fungus Glomus mosseae can enhance arsenic tolerance in Medicaga truncatula by increasing plant phosphorus status and restricting arsenate uptake. Environ Pollut 156:215–220. doi:10.1016/j.envpol.2008.01.003

    Article  CAS  PubMed  Google Scholar 

  • Xue S, Liu G, Dai Q, Dang X, Zhou P (2007) Effect of different vegetation restoration models on soil microbial biomass in eroded hilly Loess Plateau. J Nat Resour 22:20–27 in Chinese

    Google Scholar 

  • Yergeau E, Vujanovic V, St-Arnaud M (2006) Changes in communities of Fusarium and arbuscular mycorrhizal fungi as related to different asparagus culture factors. Microb Ecol 52:104–113. doi:10.1007/s00248-006-9047-7

    Article  PubMed  Google Scholar 

  • Zak JC, Willig MR, Moorhead DL, Wildman HG (1994) Functional diversity of microbial communities: a quantitative approach. Soil Biol Biochem 26:1101–1108. doi:10.1016/0038-0717(94)90131-7

    Article  Google Scholar 

  • Zhang F, Zhang SL, Chen ZJ, Zhao HY (2007) The time structure and dynamic of insect communities in the bush vegetation restoration areas of Zhifanggou watershed in Loess hilly region. Acta Ecol Sin 27:4555–4562. doi:10.1016/S1872-2032(08)60006-2 in Chinese

    Article  Google Scholar 

  • Zhou JZ, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62:3216–3221

    Google Scholar 

  • Zhu HH, Long LK, Yang SZ, Yao Q (2005) Influence of AM fungus on Ralstonia solanacearum population and bacterial community structure in rhizosphere. Mycosystema 24:137–142 in Chinese

    CAS  Google Scholar 

  • Zhu HH, Yao Q, Sun XT, Hu YL (2007) Colonization, ALP activity and plant growth promotion of native and exotic arbuscular mycorrhizal fungi at low pH. Soil Biol Biochem 39:942–950. doi:10.1016/j.soilbio.2006.11.006

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support of the Key Project of National Natural Science Foundation of China (30630054, 30730073), the Program for Changjiang Scholars and Innovative Research Team in University of China (IRT0748). We thank Jingjiang Hu (Northwest A&F University) for his comments and discussion for some of the ideas presented in this paper. We also thank anonymous reviewers for their valuable suggestions that enhanced the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Tang.

Additional information

Responsible Editor: Petra Marschner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Tang, M., Chen, H. et al. Communities of arbuscular mycorrhizal fungi and bacteria in the rhizosphere of Caragana korshinkii and Hippophae rhamnoides in Zhifanggou watershed. Plant Soil 326, 415–424 (2010). https://doi.org/10.1007/s11104-009-0022-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-009-0022-1

Keywords

Navigation