Skip to main content
Log in

Biodiversity and distribution of endophytic fungi associated with Panax quinquefolium L. cultivated in a forest reserve

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Endophytic fungi residing in Panax quinquefolium (American ginseng) have not been well characterized. We collected American ginseng of one-, two-, three- and four-year-old plants cultivated in a forest reserve and identified the endophytic fungal isolates using traditional methods. The colonization frequency and the dominant endophytic fungal species were investigated. Endophytic fungal diversity indices and similarity coefficient were also assessed and all age groups of American ginseng studied were colonized by endophytic fungal assemblages; 134 fungal isolates were assigned to 27 taxa. The infection frequencies varied with the host age and tissue. The dominant endophytic fungi were recorded for each tissue and age of host. The roots of two- and four-year-old American ginseng exhibited the highest and the lowest Shannon-Wiener index respectively. Four-year-old American ginseng had a low similarity coefficient when compared with each of the other three ages classes. The possible role of endophytic fungi in relation to American ginseng cultivation is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aly AH, Debbab A, Kjer J, Proksch P (2010) Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Divers 41:1–16

    Article  Google Scholar 

  • Ananda K, Sridhar KR (2002) Diversity of endophytic fungi in the roots of mangrove species on the west coast of India. Can J Microbiol 48:871–878

    Article  CAS  PubMed  Google Scholar 

  • Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88:541–549

    Article  PubMed  Google Scholar 

  • Arnold AE, Mejia LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. Pro Natl Acad Sci U S A 100:15649–15654

    Article  CAS  Google Scholar 

  • Bettucci L, Saravay M (1993) Endophytic fungi of Eucalyptus globulus: a preliminary study. Mycol Res 97:679–682

    Article  Google Scholar 

  • Brundrett MC (2006) Understanding the roles of multifunctional mycorrhizal and endophytic fungi. In: Schulz BJE, Boyle CJC, Sieber TN (eds) Microbial root endophytes. Springer-Verlag, Berlin, pp 281–293

    Chapter  Google Scholar 

  • Clarke BB, White JFJ, Hurley RH, Torres MS, Sun S, Huff DR (2006) Endophyte-mediated suppression of dollar spot disease in fine fescues. Plant Dis 90:994–998

    Article  Google Scholar 

  • Fisher PJ, Petrini O (1990) A comparative study of fungal endophytes in xylem and bark of Alnus species in England and Switzerland. Mycol Res 94:313–319

    Article  Google Scholar 

  • Fisher PJ, Petrini LE, Sutton BC, Petrini O (1995) A study of fungal endophytes in leaves stems and roots of Gynoxis oleifolia Muchler (Compositae) from Ecuador. Nova Hedwig 60:89–594

    Google Scholar 

  • Frohlich J, Hyde KD, Petrini O (2000) Endophytic fungi associated with palms. Mycol Res 104:1202–1212

    Article  Google Scholar 

  • Ganley RJ, Newcombe G (2006) Fungal endophytes in seeds and needles of Pinus monticola. Mycol Res 110:318–327

    Article  PubMed  Google Scholar 

  • Gonthier P, Gennaro M, Nicolotti G (2006) Effects of water stress on the endophytic mycota of Quercus robur. Fungal Divers 21:69–80

    Google Scholar 

  • Hata K, Futai K (1995) Endophytic fungi associated with healthy pine needles and needles infested by the pine needle gall midge, Thecodiplosis japonensis. Can J Bot 73:384–390

    Article  Google Scholar 

  • He CN, Gao WW, Yang JX, Bi W, Zhang XS, Zhao YJ (2009) Identification of autotoxic compounds from fibrous roots of Panax quinquefolium L. Plant Soil 318:63–72

    Article  CAS  Google Scholar 

  • Higgins KL, Arnold AE, Miadlikowska J, Sarvate SD, Lutzoni F (2007) Phylogenetic relationships, host affinity, and geographic structure of boreal and arctic endophytes from three major plant linages. Mol Phylogenet Evol 42:543–555

    Article  CAS  PubMed  Google Scholar 

  • Huang WY, Cai YZ, Hyde KD, Corke H, Sun M (2008) Biodiversity of endophytic fungi associated with 29 traditional Chinese medicinal plants. Fungal Divers 33:61–75

    Google Scholar 

  • Jumpponen A (2001) Dark septate endophytes—are they mycorrhizal? Mycorrhiza 11:207–211

    Article  Google Scholar 

  • Jumpponen A, Trappe JM (1998) Dark-septate root endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytol 140:295–310

    Article  Google Scholar 

  • Krings M, Taylor TN, Hass H, Kerp H, Dotzler N, Hermsen EJ (2007) Fungal endophytes in a 400-million-yr-old land plant: infection pathways, spatial distribution, and host responses. New Phytol 174:648–657

    Article  PubMed  Google Scholar 

  • Kumar DSS, Hyde KD (2004) Biodiversity and tissue-recurrence of endophytic fungi from Tripterygium wilfordii. Fungal Divers 17:69–90

    CAS  Google Scholar 

  • Kumaresan V, Suryanarayanan TS (2001) Occurrence and distribution of endophytic fungi in a mangrove community. Mycol Res 105:1388–1391

    Article  Google Scholar 

  • Kumaresan V, Suryanarayanan TS (2002) Endophytes assemblages in young mature and senescent leaves of Rhizophora apiculata: evidence for the role of endophytes in mangrove litter degradation. Fungal Divers 9:81–91

    Google Scholar 

  • Lacap DC, Hyde KD, Liew ECY (2003) An evaluation of the fungal ‘morphotype’ concept based on ribosomal DNA sequences. Fungal Divers 12:53–66

    Google Scholar 

  • Magurran AE (1988) Ecological diversity and its measurement. Princeton University Press, Princeton

    Google Scholar 

  • Megan S, Linda MK (2009) Evidence for alteration of fungal endophyte community assembly by host defense compounds. New Phytol 182:229–238

    Article  Google Scholar 

  • Postma J, Rattink H (1992) Biological control of Fusarium wilt of carnation with a non-pathogenic isolate of Fusarium oxysporum. Can J Bot 70:1199–1205

    Article  Google Scholar 

  • Raviraja NS (2005) Fungal endophytes in five medicinal plant species from Kudremukh Range, Western Ghats of India. J Basic Microbiol 45:230–235

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez RJ, White JJF, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    Article  CAS  PubMed  Google Scholar 

  • Rudgers JA, Holah J, Orr SP, Clay K (2007) Forest succession suppressed by an introduced plant-fungal symbiosis. Ecology 88:18–25

    Article  PubMed  Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686

    Article  PubMed  Google Scholar 

  • Schulz B, Wanke U, Drager S, Aust HJ (1993) Endophytes from berbaceous plants and shrubs: effectiveness of surface sterilization methods. Mycol Res 97:1447–1450

    Article  Google Scholar 

  • Schulz B, Römmert AK, Dammann U, Aust HJ, Strack D (1999) The endophyte-host interactions: a balanced antagonism? Mycol Res 103:1275–1283

    Article  Google Scholar 

  • Sieber VT, Hugentobler C (1987) Endophytic fungi in leaves and twigs of healthy and diseased beech trees (Fagus sylvatica L.). Eur J For Pathol 17:411–425

    Article  Google Scholar 

  • Suryanarayanan TS, Vijaykrishna D (2001) Fungal endophytes of aerial roots of Ficus benghalensis. Fungal Divers 8:155–161

    Google Scholar 

  • Taylor JE, Hyde KD, Jones EBG (1999) Endophytic fungi associated with the temperate palm, Trachycarpus fortunei, within and outside its natural geographic range. New Phytol 142:335–346

    Article  Google Scholar 

  • Tejesvi MV, Kini KR, Prakash HS, Subbiah V, Shetty HS (2007) Genetic diversity and antifungalactivity of species of Pestalotiopsis isolated as endophytes from medicinal plants. Fungal Divers 24:37–54

    Google Scholar 

  • White JFJ, Cole GT (1985) Endophyte-host association in forage grasses. III. In vitro inhibition of fungi by Acremonium coenophialum. Mycologia 77:487–489

    Article  Google Scholar 

  • Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23:753–771

    Article  CAS  PubMed  Google Scholar 

  • Zhao YJ, Wang YP, Shao D, Yang JS, Liu D (2005) Autotoxicity of Panax quinquefolium L. Allelophathy J 15:67–74

    Google Scholar 

Download references

Acknowledgments

This work was supported by National Key Technology R&D Program in the 11th Five Year Plan of China (2006BAI09B03-1). The authors thank Professor John Klironomos (University of British Columbia-Okanagan, Canada) for valuable comments and suggestions on improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunxing Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xing, X., Guo, S. & Fu, J. Biodiversity and distribution of endophytic fungi associated with Panax quinquefolium L. cultivated in a forest reserve. Symbiosis 51, 161–166 (2010). https://doi.org/10.1007/s13199-010-0062-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-010-0062-6

Keywords

Navigation