Skip to main content

Advertisement

Log in

Host Specificity of Endophytic Mycobiota of Wild Nicotiana Plants from Arid Regions of Northern Australia

  • Fungal Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

In arid regions of northern Australia, plants survive under water deficit, high temperatures, intense solar radiation and nutrient-impoverished soils. They employ various morpho-physiological and biochemical adaptations including interaction with microbial symbionts. We evaluated identity, host and tissue association with geographical distribution of fungal endophytes isolated from above- and below-ground tissues of plants of three indigenous Australian Nicotiana species. Isolation frequency and α-diversity were significantly higher for root endophyte assemblages than those of stem and leaf tissues. We recorded no differences in endophyte species richness or diversity as a function of sampling location, but did detect differences among different host genotypes and plant tissues. There was a significant pattern of community similarity associated with host genotypes but no consistent pattern of fungal community structuring associated with sampling location and tissue type, regardless of the community similarity measurements used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hopper SD, Brown AP, Marchant NG (1997) Plants of Western Australian granite outcrops. J. R. Soc. West. Aust. 80:141–158

    Google Scholar 

  2. Pepper M, Keogh JS (2014) Biogeography of the Kimberley Western Australia: a review of landscape evolution and biotic responses in an ancient refugium. J. Biogeogr. 41:1443–1445

    Article  Google Scholar 

  3. Marasco R, Rolli E, Ettoumi B, Vigani G, Mapelli F, Borin S, Abou-Hadid AF, El-Behairy UA, Sorlini C, Cherif A, Zocchi G, Daffonchio D (2012) A drought resistance-promoting microbiome is selected by root system under desert farming. PLoS One 7:e48479

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci. 14:1–4. doi:10.1016/j.tplants.2008.10.004

    Article  PubMed  CAS  Google Scholar 

  5. Khidir HK, Eudy DM, Porras-Alfaro A, Herrera J, Natvig DO, Sinsabaugh RL (2010) A general suite of fungal endophytes dominate the roots of two dominant grasses in a semiarid grassland. J. Arid Environ. 74:35–42. doi:10.1016/j.jaridenv.2009.07.014

    Article  Google Scholar 

  6. Lucero ME, Barrow JR, Osuna P, Reyes I (2006) Plant-fungal interactions in arid and semi-arid ecosystems: large-scale impacts from microscale processes. J. Arid Environ. 65:276–284

    Article  Google Scholar 

  7. Lugo MA, Reinhart KO, Menoyo E, Crespo EM, Urcelay C (2015) Plant functional traits and phylogenetic relatedness explain variation in associations with root fungal endophytes in an extreme arid environment. Mycorrhiza 25:85–95

    Article  PubMed  Google Scholar 

  8. Porras-Alfaro A, Herrera J, Sinsabaugh RL, Odenbach K, Lowrey T, Natvig DO (2008) Novel root fungal consortium associated with a dominant desert grass. Appl. Environ. Microbiol. 74:2805–2813

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Herrera J, Khidir HH, Eudy DM, Porras-Alfaro A, Natvig DO, Sinsabaugh RL (2010) Shifting fungal endophyte communities colonize Bouteloua gracilis: effect of host tissue and geographical distribution. Mycologia 102:1012–1026

    Article  PubMed  Google Scholar 

  10. Porras-Alfaro A, Raghavan S, Garcia M, Sinsabaugh RL, Natvig DO, Lowrey TK (2014) Endophytic fungal symbionts associated with gypsophilous plants. Bot 92:295–301

    Article  CAS  Google Scholar 

  11. Lucero ME, Unc A, Cooke P, Dowd S, Sun S (2011) Endophyte microbiome diversity in micropropagated Atriplex canescens and Atriplex torreyi var griffithsii. PLoS One 6:e17693

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Suryanarayanan TS, Wittlinger SK, Faeth SH (2005) Endophytic fungi associated with cacti in Arizona. Mycol. Res. 109:635–639

    Article  PubMed  Google Scholar 

  13. Bacon CW, White JF (2000) Microbial endophytes. CRC Press. Marcel Dekker Inc., New York

    Google Scholar 

  14. U'Ren JM, Dalling JW, Gallery RE, Maddison DR, Davis EC, Gibson CM, Arnold AE (2009) Diversity and evolutionary origins of fungi associated with seeds of a neotropical pioneer tree: a case study for analyzing fungal environmental samples. Mycol. Res. 113:432–449

    Article  PubMed  CAS  Google Scholar 

  15. Saikkonen K (2007) Forest structure and fungal endophytes. Fungal Biology Reviews 21:67–74

    Article  Google Scholar 

  16. Collado J, Platas G, González I, Peláez F (1999) Geographical and seasonal influences on the distribution of fungal endophytes in Quercus ilex. New Phytol. 144:525–532

    Article  Google Scholar 

  17. Kumar DSS, Hyde KD (2004) Biodiversity and tissue-recurrence of endophytic fungi in Tripterygium wilfordii. Fungal Divers. 17:69–90

    CAS  Google Scholar 

  18. Malinowski DP, Belesky DP (2000) Adaptations of endophtye-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Sci. 40:923–940

    Article  CAS  Google Scholar 

  19. Malinowski DP, Belesky DP (2006) Ecological importance of Neotyphodium spp. grass endophytes in agroecosystems. Grassl. Sci. 52:23–28

    Article  Google Scholar 

  20. Rodriguez RJ, Redman RS, Henson JM (2004) The role of fungal symbioses in the adaptation of plants to high stress environments. Mitig. Adapt. Strateg. Glob. Chang. 9:261–272

    Article  Google Scholar 

  21. Zabalgogeazcoa I (2008) Fungal endophytes and their interactions with plant pathogens. Span. J. Agric. Res. 6:138–146

    Article  Google Scholar 

  22. Lewis GC, Clement RO (1986) A survey of ryegrass endophyte in the U.K. and its apparent ineffectuality on a seedling pest. J. Agric. Sci. 107:633–638

    Article  Google Scholar 

  23. Rodriguez EAE, Jonkers W, Kistler HC, May G (2012) Interactions between Fusarium verticillioides, Ustilago maydis, and Zea mays: an endophyte, a pathogen, and their shared plant host. Fungal Genet. Biol. 49:578–587

    Article  Google Scholar 

  24. Higginbotham SJ, Arnold AE, Ibañez A, Spadafora C, Coley PD, Kursar TA (2013) Bioactivity of fungal endophytes as a function of endophyte taxonomy and the taxonomy and distribution of their host plants. PLoS One 8:e73192

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Rodriguez RJ, White J, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and ecological roles. New Phytol. 182:314–330

    Article  PubMed  CAS  Google Scholar 

  26. Barrow JR, Osuna P (2002) Phosphorus solubilization and uptake by dark septate fungi in fourwing saltbush, Atriplex canescens (Pursh) Nutt. J. Arid Environ. 51:449–459

    Article  Google Scholar 

  27. Bezerra JDP, Santos MGS, Svedese VM, Lima DMM, Fernandes MJS, Paiva LM, Souza-Motta CM (2012) Richness of endophytic fungi isolated from Opuntia ficus-indica Mill. (Cactaceae) and preliminary screening for enzyme production. World J. Microbiol. Biotechnol. 28: 1989–1995.

  28. Lopez BR, Bashan Y, Bacilio M (2011) Endophytic bacteria of Mammillaria fraileana, an endemic rock-colonizing cactus of the southern Sonoran Desert. Arch. Microbiol. 193:527–541

    Article  PubMed  CAS  Google Scholar 

  29. Massimo NC, Nandi Devan MM, Arendt KR, Wilch MH, Riddle JM, Furr SH, Steen C, U'Ren JM, Sandberg DC, Arnold AE (2015) Fungal endophytes in aboveground tissues of desert plants: infrequent in culture, but highly diverse and distinctive symbionts. Microb. Ecol. 70:61–76. doi:10.1007/s00248-014-0563-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Jumpponen A, Trappe JM (1998) Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytol. 140:295–310. doi:10.1046/j.1469-8137.1998.00265.x

    Article  Google Scholar 

  31. Porras-Alfaro A, Herrera J, Natvig DO, Lipinski K, Sinsabaugh RL (2011) Diversity and distribution of soil fungal communities in a semiarid grassland. Mycologia 103:10–21

    Article  PubMed  Google Scholar 

  32. Porras-Alfaro A, Herrera J, Natvig DO, Sinsabaugh RL (2007) Effect of long-term nitrogen fertilization on mycorrhizal fungi associated with a dominant grass in a semiarid grassland. Plant Soil 296:65–75. doi:10.1007/ s11104-007-9290-9

    Article  CAS  Google Scholar 

  33. Sun Y, Wang Q, Lu X, Okane I, Kakishima M (2012) Endophytic fungal community in stems and leaves of plants from desert areas in China. Mycol. Prog. 11:781–790

    Article  Google Scholar 

  34. Marks CE, Newbigin E, Ladiges PY (2011) Comparative morphology and phylogeny of Nicotiana section Suaveolentes (Solanaceae) in Australia and the South Pacific. Aust. Syst. Bot. 24:61–86

    Article  Google Scholar 

  35. Schulz B, Wanke U, Draeger S, Aust HJ (1993) Endophytes from herbaceous plants and shrubs: effectiveness of surfuse sterilization methods. Mycol. Res. 97:1447–1450

    Article  Google Scholar 

  36. Strobel GA (2003) Endophytes as sources of bioactive products. Microbes Infect. 5:535–544

    Article  PubMed  CAS  Google Scholar 

  37. Arnold AE, Maynard Z, Gilbert GS, Coley PD, Kursar TA (2000) Are tropical fungal endophytes hyperdiverse? Ecol. Lett. 3:267–274

    Article  Google Scholar 

  38. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol. Ecol. 2:113–118

    Article  PubMed  CAS  Google Scholar 

  39. White TJ, Bruns TD, Lee SB, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Academic Press, New York

  40. Abarenkov K, Nilsson RH, Larsson KH, Alexander IJ, Eberhardt U (2010) The UNITE database for molecular identification of fungi-recent updates and future perspectives. New Phytol. 186:281–285

    Article  PubMed  Google Scholar 

  41. Rosa LH, Almeida Vieira Mde L, Santiago IF, Rosa CA (2010) Endophytic fungi community associated with the dicotyledonous plant Colobanthus quitensis (Kunth) Bartl. (Caryophyllaceae) in Antarctica. FEMS Microbiol. Ecol. 73:178–189

    PubMed  CAS  Google Scholar 

  42. Katoh K, Asimenos G, Toh H (2009) Multiple alignment of DNA sequences with MAFFT. Humana Press, New Jersey

    Book  Google Scholar 

  43. Katoh K, Standley DM (2014) MAFFT: iterative refinement and additional methods. Methods Mol. Biol. 1079:131–146

    Article  PubMed  Google Scholar 

  44. Kia SH, Glynou K, Nau T, Thines M, Piepenbring M, Maciá-Vicente JG (2017) Influence of phylogenetic conservatism and trait convergence on the interactions between fungal root endophytes and plants. The ISME journal 11:777–790. doi:10.1038/ismej.2016.140

    Article  PubMed  Google Scholar 

  45. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  PubMed  CAS  Google Scholar 

  46. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Mentjies P, Drummond A (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wylie SJ, Zhang C, Long V, Roossinck MJ, Koh SH, Jones MGK, Iqbal S, Li H (2015) Differential responses to virus challenge of laboratory and wild accessions of Australian species of Nicotiana, and comparative analysis of RDR1 gene sequences. PLoS One 10:e0121787. doi:10.1371/journal.pone.0121787

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Chung CL, Longfellow JM, Walsh EK, Kerdieh Z, Van Esbroeck G (2010) Resistance loci affecting distinct stages of fungal pathogenesis: use of introgression lines for QTL mapping and characterization in the maize–Setosphaeria turcica pathosystem. BMC Plant Biol. 10:103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Colwell RK, Chao A, Gotelli NJ, Lin S-L, Mao CX, Chazdon RL, Longino JT (2012) Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J. Plant Ecol. 5:3–21

    Article  Google Scholar 

  50. Krebs CJ (1989) Ecological methodology. Harper & Row, New York

    Google Scholar 

  51. Quinn GP, Keough MJ (2002) Multidimensional scaling and cluster analysis. Cambridge University Press, Cambridge

    Book  Google Scholar 

  52. Wolda H (1981) Similarity indices, sample size and diversity. Oecologia 50:296–302

    Article  PubMed  Google Scholar 

  53. Fisher PJ, Petrini O, Petrini LE, Sutton BC (1994) Fungal endophytes from the leaves and twigs of Quercus ilex L. from England, Majorca and Switzerland. The New phytologist 127:133–147

    Article  Google Scholar 

  54. Gauch HG (1982) Multivariate analysis in community ecology. Cambridge University Press, Cambridge

  55. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4:9

    Google Scholar 

  56. Bae H, Roberts DP, Lim HS, Strem MD, Park SC, Ryu CM, Melnick RL, Bailey BA (2011) Endophytic Trichoderma isolates from tropical environments delay disease onset and induce resistance against Phytophthora capsici in hot pepper using multiple mechanisms. Molecular plant-microbe interactions : MPMI 24:336–351

    Article  PubMed  CAS  Google Scholar 

  57. Andrew DR, Fitak RR, Munguia-Vega A, Racolta A, Martinson VG, Dontsova K (2012) Abiotic factors shape microbial diversity in Sonoran Desert soils. Appl. Environ. Microbiol. 78:7527–7537

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Hyde KD, Soytong K (2008) The fungal endophyte dilemma. Fungal Divers. 33:163–173

    Google Scholar 

  59. Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical trees biodiversity hot spots? Ecology 88:541–549

    Article  PubMed  Google Scholar 

  60. Pinruan U, Rungjindamai N, Choeyklin R, Lumyong S, Hyde K, Jones E (2010) Occurrence and diversity of basidiomycetous endophytes from the oil palm, Elaeis guineensis in Thailand. Fungal Divers. 41:71–88

    Article  Google Scholar 

  61. Cai L, Hyde KD, Taylor PWJ, Weir BS, Waller J, Abang MM, Zhang JZ, Yang YL, Phoulivong S, Liu ZY, Prihastuti H, Shivas RG, McKenzie EHC, Johnston PR (2009) A polyphasic approach for studying Colletotrichum. Fungal Divers. 39:183–204

    Google Scholar 

  62. Blaalid R, Kumar S, Nilsson RH, Abarenkov K, Kirk PM (2013) ITS1 versus ITS2 as DNA metabarcodes for fungi. Mol. Ecol. Resour. 13:218–224

    Article  PubMed  CAS  Google Scholar 

  63. Op De Beeck M, Lievens B, Busschaert P, Declerck S, Vangronsveld J, Colpaert JV (2014) Comparison and validation of some ITS primer pairs useful for fungal metabarcoding studies. PLoS One 9:e97629

    Article  Google Scholar 

  64. U'Ren JM, Lutzoni F, Miadlikowska J, Laetsch AD, Arnold AE (2012) Host- and geographic structure of endophytic and endolichenic fungi at a continental scale. Am. J. Bot. 99:898–9143

    Article  PubMed  Google Scholar 

  65. Sakayaroj J, Preedanon S, Supaphon O, Jones EBG, Phongpaichit S (2010) Phylogenetic diversity of endophyte assemblages associated with the tropical seagrass Enhalus acoroides in Thailand. Fungal Divers. 42:27–45

    Article  Google Scholar 

  66. Stone JK, Polishook JD, White JRJ (2004) Endophytic fungi. Elsevier, Burlington

    Book  Google Scholar 

  67. Thomas SE, Crozier J, Aime MC, Evans HC, Holmes KA (2008) Molecular characterization of fungal endophytic morphospecies associated with the indigenous forest tree, Theobroma gileri, in Ecuador. Mycol. Res. 112:852–860

    Article  PubMed  CAS  Google Scholar 

  68. Albrectsen BR, Björkén L, Varad A, Hagner A, Wedin M, Karlsson J, Jansso S (2010) Endophytic fungi in European aspen (Populus tremula) leaves-diversity, detection, and a suggested correlation with herbivory resistance. Fungal Divers. 41. doi:10.1007/s13225-009-0011-y

  69. Zhang ZB, Zeng QG, Yan RM, Wang Y, Zou ZR, Zhu D (2011) Endophytic fungus Cladosporium cladosporioides LF70 from Huperzia serrata produces Huperzine A. World J. Microbiol. Biotechnol. 27:479–486

    Article  CAS  Google Scholar 

  70. Botella L, Diez JJ (2011) Phylogenic diversity of fungal endophytes in Spanish stands of Pinus halepensis. Fungal Divers. 47:9–18. doi:10.1007/s13225-010-0061-1

    Article  Google Scholar 

  71. Cannon CD, Simmons CM (2002) Diversity and host preference of leaf endophytic fungi in the Iwokrama forest reserve, Guyana. Mycologia 94:210–220

    Article  PubMed  Google Scholar 

  72. Clement SL, Graves W, Cunningham P, Nebling V, Bounejmate W, Saidi S, Baya B, Chakroun M, Mezni A, Porqueddu C (1997) Acremonium endophytes in Mediterranean tall fescue. In: Bacon CW, Hill NS (eds) Neotyphodium/grass interactions. Springer, New York, pp 49–51

    Chapter  Google Scholar 

  73. Ghimire SR, Charlton ND, Bell JD, Krishnamurthy YL, Craven KD (2011) Biodiversity of fungal endophyte communities inhabiting switchgrass (Panicum virgatum L.) growing in the native tallgrass prairie of northern Oklahoma. Fungal Divers. 47:19–27. doi:10.1007/s13225-010-0085-6

    Article  Google Scholar 

  74. Gond SK, Verma VC, Kumar A, Kharwar RN (2007) Study of endophytic fungal community from different parts of Aegle marmelos Correae (Rutaceae) from Varanasi (India). World J Microb Biot 23:1371–1375

    Article  Google Scholar 

  75. Harman GE (2011) Multifunctional fungal plant symbionts: new tools to enhance plant growth and productivity. New Phytol. 189:647–649

    Article  PubMed  Google Scholar 

  76. Kusari P, Kusari S, Spiteller M, Kayser O (2013) Endophytic fungi harbored in Cannabis sativa L.: diversity and potential as biocontrol agents against host plant-specific phytopathogens. Fungal Divers. 60:137–151. doi:10.1007/s13225-012-0216-3

    Article  Google Scholar 

  77. Macia’-Vicente JG, Jansson HB, Mendgen K, Lopez-Llorca LV (2008) Colonization of barley roots by endophytic fungi and their reduction of take-all caused by Gaeumannomyces graminis var. tritici. Can. J. Microbiol. 54:600–609. doi:10.1139/w08-047

    Article  Google Scholar 

  78. Nalini MS, Sunayana N, Prakash HS (2014) Endophytic fungal diversity in medicinal plants of Western Ghats, India. International Journal of Biodiversity 9:494213

    Google Scholar 

  79. Paparu P, Dubois T, Coyne D, Viljoen A (2009) Dual inoculation of Fusarium oxysporum endophytes in banana: effect on plant colonisation, growth and control of the root burrowing nematode and the banana weevil. Biocontrol Sci Techn 19:639–655

    Article  Google Scholar 

  80. Rosmana A, Samuels GJ, Ismaiel A, Ibrahim ES, Chaverri P, Herawati Y, Asman A (2015) Trichoderma asperellum: a dominant endophyte species in cacao grown in sulawesi with potential for controlling vascular streak dieback disease. Tropical Plant Pathology 40:19–25

    Article  Google Scholar 

  81. Spurr HWJ, Welty RE (1975) Characterization of endophytic fungi in healthy leaves of Nicotiana spp. Phytopathology 65:417–422

    Article  Google Scholar 

  82. Wang B, Priest MJ, Davidson A, Brubaker CL, Woods MJ, Burdon JJ (2007) Fungal endophytes of native Gossypium species in Australia. Mycol. Res. 111:347–354

    Article  PubMed  Google Scholar 

  83. Zhou K, Wang W, Peng Y, Yu R, Yue Y, Lai D, Zhou L (2015) Endophytic fungi from Nicotiana tabacum L.and their antibacterial activity. Natural Product Research and Development 27:1847–1852

    CAS  Google Scholar 

  84. Wilson D (2000) Ecology of woody plant endophytes. Mercel Dekker Inc., New York

    Google Scholar 

  85. McKenna JEJ (2003) An enhanced cluster analysis program with bootstrap significance testing for ecological community analysis. Environ. Model Softw. 18:205–220

    Article  Google Scholar 

  86. Del Olmo RM, Arnold AE (2014) Inter annual variation and host affiliations of endophytic fungi associated with ferns at la Selva, Costa Rica. Mycologia 106:8–21

    Article  Google Scholar 

  87. Higgins KL, Arnold AE, Coley PD, Kursar TK (2014) Communities of fungal endophytes in tropical forest grasses: highly diverse host- and habitat generalists characterized by strong spatial structure. Fungal Ecol. 8:1–11

    Article  Google Scholar 

  88. Chobba BI, Elleuch A, Ayadi I, Khannous L, Namsi A, Cerqueira F, Drira N, Gharsallah N, Vallaeys T (2013) Fungal diversity in adult date palm (Phoenix dactylifera L.) revealed by culture-dependent and culture-independent approaches. J Zhejiang Univ Sci B 14:1084–1099

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The first author was supported through the Research Training Program (RTP) scheme (formerly known as the International Postgraduate Research Scholarship, IPRS) by Murdoch University, Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Wylie.

Electronic Supplementary Material

Table S1

(XLSX 36 kb).

Figure S1

(DOCX 163 kb).

Figure S2

(DOCX 151 kb).

Figure S3

(DOCX 113 kb).

ESM 1

(TXT 133 kb).

ESM 2

(TXT 75 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dastogeer, K.M., Li, H., Sivasithamparam, K. et al. Host Specificity of Endophytic Mycobiota of Wild Nicotiana Plants from Arid Regions of Northern Australia. Microb Ecol 75, 74–87 (2018). https://doi.org/10.1007/s00248-017-1020-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-017-1020-0

Keywords

Navigation