Skip to main content
Log in

Efficient and stable transgene suppression via RNAi in field-grown poplars

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

The efficiency and stability of RNA interference (RNAi) in perennial species, particularly in natural environments, is poorly understood. We studied 56 independent poplar RNAi transgenic events in the field over 2 years. A resident BAR transgene was targeted with two different types of RNAi constructs: a 475-bp IR of the promoter sequence and a 275-bp IR of the coding sequence, each with and without the presence of flanking matrix attachment regions (MARs). RNAi directed at the coding sequence was a strong inducer of gene silencing; 80% of the transgenic events showed more than 90% suppression. In contrast, RNAi targeting the promoter resulted in only 6% of transgenic events showing more than 90% suppression. The degree of suppression varied widely but was highly stable in each event over 2 years in the field, and had no association with insert copy number or the presence of MARs. RNAi remained stable during a winter to summer seasonal cycle, a time when expression of the targeted transgene driven by an rbcS promoter varied widely. When strong gene suppression was induced by an IR directed at the promoter sequence, it was accompanied by methylation of the homologous promoter region. DNA methylation was also observed in the coding region of highly suppressed events containing an IR directed at the coding sequence; however, the methylation degree and pattern varied widely among those suppressed events. Our results suggest that RNAi can be highly effective for functional genomics and biotechnology of perennial plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abranches R, Shultz RW, Thompson WF, Allen GC (2005) Matrix attachment regions and regulated transcription increase and stabilize transgene expression. Plant Biotechnol J 3:535–543

    Article  PubMed  CAS  Google Scholar 

  • Allen GC, Hall G Jr, Michalowski S, Newman W, Spiker S, Weissinger AK, Thompson WF (1996) High-level transgene expression in plant cells: effects of a strong scaffold attachment region from tobacco. Plant Cell 8:899–913

    Article  PubMed  CAS  Google Scholar 

  • Allen GC, Spiker S, Thompson WF (2000) Use of matrix attachment regions (MARs) to minimize transgene silencing. Plant Mol Biol 43:361–376

    Article  PubMed  CAS  Google Scholar 

  • Aufsatz W, Mette MF, van der Winden J, Matzke AJM, Matzke M (2002) RNA-directed DNA methylation in Arabidopsis. Proc Natl Acad Sci USA 99:16499–16506

    Article  PubMed  CAS  Google Scholar 

  • Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363

    Article  PubMed  CAS  Google Scholar 

  • Brodersen P, Voinnet O (2006) The diversity of RNA silencing pathways in plants. Trends Genet 22:268–280

    Article  PubMed  CAS  Google Scholar 

  • Brunner AM, Li J, DiFazio SP, Shevchenko O, Montgomery BE, Mohamed R, Wei H, Ma C, Elias AA, VanWormer K, Strauss SH (2007) Genetic containment of forest plantations. Tree Genet Genomes 3:75–100

    Article  Google Scholar 

  • Brunner AM, Yakovlev IA, Strauss SH (2004) Validating internal controls for quantitative plant gene expression studies. BMC Plant Biol 4:14

    Article  PubMed  Google Scholar 

  • Butaye KMJ, Goderis IJWM, Wouters PFJ, Pues JMTG, Delaure SL, Broekaert WF, Depicker A, Cammue BPA, De Bolle MFC (2004) Stable high-level transgene expression in Arabidopsis thaliana using gene silencing mutants and matrix attachment regions. Plant J 39:440–449

    Article  PubMed  CAS  Google Scholar 

  • Chan SWL, Henderson IR, Zhang X, Shah G, Chien JSC, Jacobsen SE (2006) RNAi, DRD1, and histone methylation actively target developmentally important non-CG DNA methylation in Arabidopsis. PLoS Genet 2:0791–0797

    CAS  Google Scholar 

  • Chuang C-F, Meyerowitz EM (2000) Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc Natl Acad Sci USA 97:4985–4990

    Article  PubMed  CAS  Google Scholar 

  • Cigan AM, Unger-Wallace E, Haug-Collet K (2005) Transcriptional gene silencing as a tool for uncovering gene function in maize. Plant J 43:929–940

    Article  PubMed  CAS  Google Scholar 

  • Coruzzi G, Broglie R, Edwards C, Chua NH (1984) Tissue-specific and light-regulated expression of a pea nuclear gene encoding the small subunit of ribulose-1,5-bisphosphate carboxylase. EMBO J 3:1671–1679

    PubMed  CAS  Google Scholar 

  • Ebbs ML, Bartee L, Bender J (2005) H3 Lysine 9 methylation Is maintained on a transcribed inverted repeat by combined action of SUVH6 and SUVH4 methyltransferases. Mol Cell Biol 25:10507–10515

    Article  PubMed  CAS  Google Scholar 

  • Filichkin SA, Meilan R, Busov VB, Ma C, Brunner AM, Strauss SH (2006) Alcohol-inducible gene expression in transgenic Populus. Plant Cell Rep 25:660–667

    Article  PubMed  CAS  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  PubMed  CAS  Google Scholar 

  • Fortier E, Belote JM (2000) Temperature-dependent gene silencing by an expressed inverted repeat in Drosophila. Genesis 26:240–244

    Article  PubMed  CAS  Google Scholar 

  • Halweg C, Thompson WF, Spiker S (2005) The rb7 matrix attachment region increases the likelihood and magnitude of transgene expression in tobacco cells: a flow cytometric study. Plant Cell 17:418–429

    Article  PubMed  CAS  Google Scholar 

  • Hellens RP, Edwards EA, Leyland NR, Bean S, Mullineaux PM (2000) pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol Biol 42:819–832

    Article  PubMed  CAS  Google Scholar 

  • Hoenicka H, Fladung M (2006) Genome instability in woody plants derived from genetic engineering. In: Fladung M, Ewald D (eds) Tree Transgenesis—recent developments. Springer, Berlin, Heidelberg, pp 301–321

    Google Scholar 

  • Kameda T, Ikegami K, Liu Y, Terada K, Sugiyama T (2004) A hypothermic-temperature-sensitive gene silencing by the mammalian RNAi. Biochem Bioph Res Co 315:599–602

    Article  CAS  Google Scholar 

  • Kawasaki H, Taira K (2004) Induction of DNA methylation and gene silencing by short interfering RNAs in human cells. Nature 431:211–217

    Article  PubMed  CAS  Google Scholar 

  • Kerschen A, Napoli C, Jorgensen R, Muller A (2004) Effectiveness of RNA interference in transgenic plants. FEBS Lett 566:223–228

    Article  PubMed  CAS  Google Scholar 

  • Koltunow AM, Truettner J, Cox KH, Wallroth M, Goldberg RB (1990) Different temporal and spatial gene expression patterns occur during anther development. Plant Cell 2:1201–1224

    Article  PubMed  CAS  Google Scholar 

  • Kooter JM, Matzke MA, Meyer P (1999) Listening to the silent genes: transgene silencing, gene regulation and pathogen control. Trends Plant Sci 4:340–347

    Article  PubMed  Google Scholar 

  • Kurreck J (2006) siRNA efficiency: structure or sequence—that is the question. J Biomed Biotechnol 2006:1–7

    Article  Google Scholar 

  • Kusaba M (2004) RNA interference in crop plants. Curr Opin Biotechnol 15:139–143

    Article  PubMed  CAS  Google Scholar 

  • Levin JS, Thompson WF, Csinos AS, Stephenson MG, Weissinger AK (2005) Matrix attachment regions increase the efficiency and stability of RNA-mediated resistance to Tomato Spotted Wilt Virus in transgenic tobacco. Transgenic Res 14:193–206

    Article  PubMed  CAS  Google Scholar 

  • Li J (2006) Stability of reporter gene expression and RNAi in transgenic poplars over multiple years in the field under vegetative propagation. Dissertation, Oregon State University

  • Li J, Meilan R, Ma C, Barish M, Strauss SH (2007) Stability of herbicide resistance over eight years of coppice in field-grown, genetically engineered poplars. West J Appl For (in press)

  • Li L-C, Dahiya R (2002) MethPrimer: designing primers for methylation PCRs. Bioinformatics 18:1427–1431

    Article  PubMed  CAS  Google Scholar 

  • Lippman Z, Martienssen R (2004) The role of RNA interference in heterochromatic silencing. Nature 431:364–370

    Article  PubMed  CAS  Google Scholar 

  • Mallory AC, Vaucheret H (2006) Functions of microRNAs and related small RNAs in plants. Nat Genet 38(Suppl):S31–S36

    Article  PubMed  CAS  Google Scholar 

  • Mathieu O, Bender J (2004) RNA-directed DNA methylation. J Cell Sci 117:4881–4888

    Article  PubMed  CAS  Google Scholar 

  • Matzke MA, Birchler JA (2005) RNAi-mediated pathways in the nucleus. Nat Rev Genet 6:24–35

    Article  PubMed  CAS  Google Scholar 

  • McGinnis K, Murphy N, Carlson AR, Akula A, Akula C, Basinger H, Carlson M, Hermanson P, Kovacevic N, McGill MA, Seshadri V, Yoyokie J, Cone K, Kaeppler HF, Kaeppler SM, Springer NM (2007) Assessing the efficiency of RNA interference for maize functional genomics. Plant Physiol 143:1441–1451

    Article  PubMed  CAS  Google Scholar 

  • Meilan R, Han K, Ma C, DiFazio SP, Eaton JA, Hoien EA, Stanton BJ, Crockett RP, Taylor ML, James RR, Skinner JS, Jouanin L, Pilate G, Strauss SH (2002) The CP4 transgene provides high levels of tolerance to Roundup herbicide in field-grown hybrid poplars. Can J For Res 32:967–976

    Article  CAS  Google Scholar 

  • Mette MF, Aufsatz W, Winden Jvd, Matzke MA, Matzke AJM (2000) Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J 19:5194–5201

    Article  PubMed  CAS  Google Scholar 

  • Mlynarova L, Hricova A, Loonen A, Nap JP (2003) The presence of a chromatin boundary appears to shield a transgene in tobacco from RNA silencing. Plant cell 15:2203–2217

    Article  PubMed  Google Scholar 

  • Mohamed R (2006) Expression and function of Populus homologs to TERMINAL FLOWER 1 genes: roles in onset of flowering and shoot phenology. Dissertation. Oregon State University

  • Morris KV, Chan SWL, Jacobsen SE, Looney DJ (2004) Small interfering RNA-induced transcriptional gene silencing in human cells. Science 305:1289–1292

    Article  PubMed  CAS  Google Scholar 

  • Pélissier T, Thalmeir S, Kempe D, Sänger HL, Wassenegger M (1999) Heavy de novo methylation at symmetrical and non-symmetrical sites is a hallmark of RNA-directed DNA methylation. Nucleic Acids Res 27:1625–1634

    Article  PubMed  Google Scholar 

  • Plasterk R, Ketting R (2000) The silence of the genes. Curr Opin Genet Dev 10:562–567

    Article  PubMed  CAS  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, NJ, pp 365–386

    Google Scholar 

  • Small I (2007) RNAi for revealing and engineering plant gene functions. Curr Opin Biotechnol 18:148–153

    Article  PubMed  CAS  Google Scholar 

  • Smith NA, Singh SP, Wang M-B, Stoutjesdijk PA, Green AG, Waterhouse PM (2000) Gene expression: total silencing by intron-spliced hairpin RNAs. Nature 407:319–320

    Article  PubMed  CAS  Google Scholar 

  • Sós-Hegedűs A, Lovas Á, Kondrák M, Kovács G, Bánfalvi Z (2005) Active RNA silencing at low temperature indicates distinct pathways for antisense-mediated gene-silencing in potato. Plant Mol Biol 59:595–602

    Article  PubMed  Google Scholar 

  • Stam M, Mol JNM, Kooter JM (1997) The silence of genes in transgenic plants. Ann Bot 79:3–12

    Article  CAS  Google Scholar 

  • Stoutjesdijk PA, Singh SP, Liu Q, Hurlstone CJ, Waterhouse PA, Green AG (2002) hpRNA-mediated targeting of the Arabidopsis FAD2 gene gives highly efficient and stable silencing. Plant Physiol 129:1723–1731

    Article  PubMed  CAS  Google Scholar 

  • Strauss SH, Rottmann WH, Brunner AM, Sheppard LA (1995) Genetic engineering of reproductive sterility in forest trees. Mol Breed 1:5–26

    Article  CAS  Google Scholar 

  • Sugita M, Gruissem W (1987) Developmental, organ-specific, and light-dependent expression of the tomato ribulose-1,5-bisphosphate carboxylase small subunit gene family. Proc Natl Acad Sci USA 84:7104–7108

    Article  PubMed  CAS  Google Scholar 

  • Szittya G, Silhavy D, Molnár A, Havelda Z, Lovas Á, Lakatos L, Bánfalvi Z, Burgyán1 J (2003) Low temperature inhibits RNA silencing-mediated defence by the control of siRNA generation. EMBO J 22:633–640

    Article  PubMed  CAS  Google Scholar 

  • van der Geest AH, Welter ME, Woosley AT, Pareddy DR, Pavelko SE, Skokut M, Ainley WM (2004) A short synthetic MAR positively affects transgene expression in rice and Arabidopsis. Plant Biotechnol J 2:13–26

    Article  PubMed  Google Scholar 

  • Vance V, Vaucheret H (2001) RNA silencing in plants—defense and counterdefense. Science 292:2277–2280

    Article  PubMed  CAS  Google Scholar 

  • Wagner A, Phillips L, Narayan RD, Moody JM, Geddes B (2005) Gene silencing studies in the gymnosperm species Pinus radiata. Plant Cell Rep 24:95–102

    Article  PubMed  CAS  Google Scholar 

  • Wassenegger M (2000) RNA-directed DNA methylation. Plant Mol Biol 43:203–220

    Article  PubMed  CAS  Google Scholar 

  • Waterhouse PM, Graham MW, Wang M-B (1998) Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci USA 95:13959–13964

    Article  PubMed  CAS  Google Scholar 

  • Wesley SV, Helliwell CA, Smith NA, Wang M, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA, Robinson SP, Gleave AP, Green AG, Waterhouse PM (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27:581–590

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Plant Genetic Systems for kindly providing the vector pTTM8, Monsanto for the use of their CP4 gene, Dr. Steven Spiker for providing MAR fragment, and Dr. Peter Waterhouse for the use of pHANNIBAL. This work was supported by Initiative for Future Agriculture and Food Systems (award # 00-52100-9623) from the USDA Cooperative State Research, Education, and Extension Service; TBGRC/TGERC Research Cooperative; the OSU Foundation Forest Biotechnology Fund; and the Conrad Wessela Scholarship Fund at the OSU College of Forestry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven H. Strauss.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 47 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Brunner, A.M., Shevchenko, O. et al. Efficient and stable transgene suppression via RNAi in field-grown poplars. Transgenic Res 17, 679–694 (2008). https://doi.org/10.1007/s11248-007-9148-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-007-9148-1

Keywords

Navigation