Skip to main content
Log in

Nutritional profile and nutraceutical components of olive (Olea europaea L.) seeds

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Olive seeds, a potential food by-product from both table olive and olive oil industries, were examined for their overall proximate composition, oil, protein, mineral and phenolic components. Proximate analysis indicates that olive seeds are an unusually rich source of total dietary fibre (≅ 47% dry weight basis, DWB), as well as lipids (≅ 30%) and proteins (≅ 17%). Oil composition shows high levels of oleic (≅ 62% of total fatty acids) and linoleic (≅ 24%) acids, moderate concentrations of tocopherols (≅ 460 mg/kg) and squalene (≅ 194 mg/kg), and relatively high amounts of several sterols and non-steroidal triterpenoids. Olive seed proteins are a rich source of essential amino acids (about 46% of the total AA content). Olive seeds also contain significant amounts of some essential macro-elements (K, Ca, Mg, Na, P) and micro-elements (Zn, Mn, Cu). Phenolic compounds are present at relatively high quantities (≅ 2.8 mg/g seed, DWB); the most abundant belong to the group of secoiridoid compounds (elenolic acid derivatives) including oleuropein and structurally related substances (demethyloleuropein and ligstroside), and nüzhenide derivatives. Based on the general nutritional profile and nutraceutical components, olive seeds have value-added potential as a source of edible oil, proteins or meal serving as feed supplements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alaiz M, Navarro JL, Girón J, Vioque E (1992) Amino acid analysis by high-performance liquid chromatography after derivatization with diethyl ethoxymethylenemalonate. J Chrom A 591:181–186

    Article  CAS  Google Scholar 

  • Alché JD, Jiménez-López JC, Wang W, Castro-López AJ, Rodríguez-García MI (2006) Biochemical characterization and cellular localization of 11S type storage proteins in olive (Olea europaea L.) seeds. J Agric Food Chem 54:5562–5570

    Article  CAS  Google Scholar 

  • Alu’datt MH, Alli I, Ereifej K, Alhamad MN, Alsaad A, Rababeh T (2011) Optimisation and characterisation of various extraction conditions of phenolic compounds and antioxidant activity in olive seeds. Nat Prod Res 25:876–889

    Article  CAS  PubMed  Google Scholar 

  • AOCS (2009) Official methods and recommended practices of the american oil chemists’ society. AOCS Press, Champaign

    Google Scholar 

  • Appleton J (2002) Arginine: clinical potential of a semi-essential amino acid. Altern Med Rev 7:512–522

    PubMed  Google Scholar 

  • Belitz HD, Grosch W, Schieberle P (2009) Food chemistry. In: Belitz HD, Grosch W, Schieberle P (eds) Food chemistry. Springer, Berlin

    Google Scholar 

  • Ben Mansour A, Porter EA, Kite GC, Simmonds MS, Abdelhedi R, Bouaziz M (2015) Phenolic profile characterization of Chemlali olive stones by liquid chromatography-ion trap mass spectrometry. J Agric Food Chem 63:1990–1995

    Article  CAS  PubMed  Google Scholar 

  • Bodoira R, Torres M, Pierantozzi P, Aguate F, Taticchi A, Servili M, Maestri D (2016) Dynamics of fatty acids, tocopherols and phenolic compounds biogenesis during olive (Olea europaea L.) fruit ontogeny. J Am Oil Chem Soc 93:1289–1299

    Article  CAS  Google Scholar 

  • Bodoira R, Rossi Y, Montenegro M, Maestri D, Velez A (2017) Extraction of antioxidant polyphenolic compounds from peanut skin using water–ethanol at high pressure and temperature conditions. J Super Fluids 128:57–65

    Article  CAS  Google Scholar 

  • Chang SK, Alasalvar C, Bolling BW, Shahidi F (2016) Nuts and their co-products: the impact of processing (roasting) on phenolics, bioavailability, and health benefits—a comprehensive review. J Funct Foods 26:88–122

    Article  CAS  Google Scholar 

  • Del Caro A, Vacca V, Poiana M, Fenu P, Piga A (2006) Influence of technology, storage and exposure on components of extra virgin olive oil (Bosana cv) from whole and de-stoned fruits. Food Chem 98:311–316

    Article  CAS  Google Scholar 

  • Dermeche S, Nadour M, Larroche C, Moulti-Mati F, Michaud P (2013) Olive mill wastes: biochemical characterizations and valorization strategies. Process Biochem 48:1532–1552

    Article  CAS  Google Scholar 

  • Di Donna L, Mazzotti F, Napoli A, Salermo R, Sajjad A, Sindona G (2007) Secondary metabolism of olive secoiridoids. New microcomponents detected in drupes by electronspray ionization and high-resolution tandem mass spectrometry. Rapid Commun Mass Spectrom 21:273–278

    Article  CAS  PubMed  Google Scholar 

  • FAO/WHO/UNU (1985) Energy and protein requirements. Report of the joint FAO/WHO/UNU expert consultation. Technical report series no. 724. FAO. WHO and the United Nations University, Geneva

  • Fernandez-Hernandez A, Mateos R, García-Mesa JA, Beltrán G, Fernandez-Escobar R (2010) Determination of mineral elements in fresh olive fruits by flame atomic spectrometry. Span J Agric Res 8:1183–1190

    Article  Google Scholar 

  • Friedman M (1996) Nutritional value of proteins from different food sources. A review. J Agric Food Chem 44:6–29

    Article  CAS  Google Scholar 

  • García-Inza GP, Castro DN, Hall AJ, Rousseaux MC (2016) Opposite oleic acid responses to temperature in oils from the seed and mesocarp of the olive fruit. Eur J Agron 76:138–147

    Article  CAS  Google Scholar 

  • Griboff J, Wunderlin DA, Monferran MV (2017) Metals, As and Se determination by inductively coupled plasma–mass spectrometry (ICP–MS) in edible fish collected from three eutrophic reservoirs. Their consumption represents a risk for human health? Microchem J 130:236–244

    Article  CAS  Google Scholar 

  • Gunstone FD, Harwood JL (2007) Occurrence and characteristics of oils and fats. In: Gunstone FD, Harwood JL, Dijkstra AJ (eds) The lipid handbook. CRC Press, Boca Raton, pp 37–141

    Google Scholar 

  • Kanakis P, Termentzi A, Michel T, Gikas E, Halabalaki M, Skaltsounis AL (2013) From olive drupes to olive oil. An HPLC-Orbitrap-based qualitative and quantitative exploration of olive key metabolites. Planta Med 79:1576–1587

    Article  CAS  PubMed  Google Scholar 

  • Katsoyannos E, Batrinou A, Chatzilazarou A, Bratakos SM, Stamatopoulos K, Sinanoglou VJ (2015) Quality parameters of olive oil from stoned and non-stoned Koroneiki and Megaritiki Greek olive varieties at different maturity levels. Grasas Aceites 66:1–10

    Google Scholar 

  • Klen TJ, Wondra AG, Vrhovsek U, Vodopivec BM (2015) Phenolic profiling of olives and olive oil process-derived matrices using UPLC–DAD–ESI–QTOF–HRMS analysis. J Agric Food Chem 63:3859–3872

    Article  CAS  PubMed  Google Scholar 

  • Kyçyk O, Aguilera MP, Gaforio JJ, Jiménez A, Beltrán G (2016) Sterol composition of virgin olive oil of forty-three olive cultivars from the World Collection Olive Germplasm Bank of Cordoba. J Sci Food Agric 96:4143–4150

    Article  CAS  PubMed  Google Scholar 

  • Maestri D, Martínez M, Bodoira R, Rossi Y, Oviedo A, Pierantozzi P, Torres M (2015) Variability in almond oil chemical traits from traditional cultivars and native genetic resources from Argentina. Food Chem 170:55–61

    Article  CAS  PubMed  Google Scholar 

  • Martínez M, Mattea M, Maestri D (2006) Varietal and crop year effects on lipid composition of walnut (Juglans regia L.) genotypes. J Am Oil Chem Soc 83:791–796

    Article  Google Scholar 

  • Mateos R, Uceda M, Aguilera MP, Escuderos ME, Beltrán Maza G (2006) Relationship of Rancimat method values at varying temperatures for virgin olive oils. Eur Food Res Technol 223:246–252

    Article  CAS  Google Scholar 

  • Michel T, Khlif I, Kanakis P, Termentzi P, Allouche N, Halabalaki M, Skaltsouni A (2015) UHPLC–DAD–FLD and UHPLC–HRMS/MS based metabolic profiling and characterization of different Olea europaea organs of Koroneiki and Chetoui varieties. Phytochem Lett 11:424–439

    Article  CAS  Google Scholar 

  • Moghaddam G, Vander Heyden Y, Rabiei Z, Sadeghi N, Oveisi MR, Jannat B, Shokoufeh Hassani S, Behzad M, Hajimahmoodi M (2012) Characterization of different olive pulp and kernel oils. J Food Comp Anal 28:54–60

    Article  CAS  Google Scholar 

  • Nergiz C, Çelikkale D (2011) The effect of consecutive steps of refining on squalene content of vegetable oils. J Food Sci Technol 48:382–385

    Article  CAS  PubMed  Google Scholar 

  • Nergiz C, Engez Y (2000) Compositional variation of olive fruit during ripening. Food Chem 69:55–59

    Article  CAS  Google Scholar 

  • Park CS, Marx GD, Moon YS, Wiesenborn D, Chang KC, Hofman VL (1997) Alternative uses of sunflower. In: Schneiter AA (ed) Sunflower technology and production. Wiley, Madison, pp 765–808

    Google Scholar 

  • Pérez-Bonilla M, Salido S, van Beek TA, de Waar P, Linares-Palomino PJ, Sánchez A, Altarejos J (2011) Isolation of antioxidative secoiridoids from olive wood (Olea europaea L.) guided by on-line HPLC–DAD–radical scavenging detection. Food Chem 124:36–41

    Article  CAS  Google Scholar 

  • Primo Yúfera E (1998) Química de los Alimentos. Editorial Alhambra, Madrid

    Google Scholar 

  • Ranalli A, Pollastri L, Contento S, Di Loreto G, Iannucci E, Lucera L, Russi F (2002) Sterol and alcohol components of seed, pulp and whole olive fruit oils. Their use to characterise olive fruit variety by multivariates. J Agric Food Chem 50:3775–3779

    Article  CAS  PubMed  Google Scholar 

  • Ranalli F, Ranalli A, Contento S, Casanovas M, Antonucci M, Di Simone G (2012) Concentrations of bioactives and functional factors in destoned virgin olive oil: the case study of the oil from olivastra di Seggiano cultivar. J Pharm Nutr Sci 2:83–93

    CAS  Google Scholar 

  • Reyes-Caudillo E, Tecante A, Valdivia-López MA (2008) Dietary fibre content and antioxidant activity of phenolic compounds present in Mexican chia (Salvia hispanica L.) seeds. Food Chem 107:656–663

    Article  CAS  Google Scholar 

  • Rodríguez G, Lama A, Rodríguez R, Jiménez A, Guillén R, Fernández-Bolaños J (2008) Olive stone an attractive source of bioactive and valuable compounds. Bioresour Technol 99:5261–5269

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Rodriguez E, Lima-Cabello E, Biel-Glesson S, Fernandez-Navarro JR, Calleja MA, Roca M, Espejo-Calvo JA, Gil-Extremera B, Soria-Florido M, de la Torre R, Fito M, Covas M, Alche J, Martinez de Victoria E, Gil A, Mesa MD (2018) Effects of virgin olive oils differing in their bioactive compound contents on metabolic syndrome and endothelial functional risk biomarkers in healthy adults: a randomized double-blind controlled trial. Nutrients 10:1–17

    Article  CAS  Google Scholar 

  • Servili M, Baldioli M, Selvaggini R, Macchioni A, Montedoro G (1999) Phenolic compounds of olive fruit: one- and two-dimensional nuclear magnetic resonance characterization of nüzhenide and its distribution in the constitutive parts of fruit. J Agric Food Chem 47:12–18

    Article  CAS  PubMed  Google Scholar 

  • Tanahashi T, Takenaka Y, Akimoto M, Okuda A, Kusunoki Y, Suekawa C, Nagakura N (1997) Six secoiridoid glucosides from Jasminum polyanthum. Chem Pharm Bull 45:367–372

    Article  CAS  Google Scholar 

  • Tanilgan K, Özcan M, Ünver A (2007) Physical and chemical characteristics of five Turkish olive (Olea europea L.) varieties and their oils. Grasas Aceites 58:142–147

    CAS  Google Scholar 

  • Varadharaj S, Kelly OJ, Khayat RN, Kumar PS, Ahmed N, Zweier JL (2017) Role of dietary antioxidants in the preservation of vascular function and the modulation of health and disease. Front Cardiovasc Med 4:1–11

    Article  CAS  Google Scholar 

  • Wanasundara JPD (2011) Proteins of Brassicaceae oilseeds and their potential as a plant protein source. Crit Rev Food Sci Nutr 51:635–677

    Article  CAS  PubMed  Google Scholar 

  • Zafra A, M’rani-Alaoui M, Lima E, Jiménez-López JC, Alché JD (2018) Histological features of the olive seed and presence of 7S-type seed storage proteins as hallmarks of the olive fruit development. Front Plant Sci 9:1–15

    Article  Google Scholar 

  • Zienkiewicz A, Zienkiewicz K, Rejón JD, Alché JD, Castro AJ, Rodríguez-García MI (2014) Olive seed protein bodies store degrading enzymes involved in mobilization of oil bodies. J Exp Bot 65:103–115

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was financed with funds from FEDER (Projects RTC-2016-4824-2, RTC-2017-6654-2, BFU2016-77243-P), and Grants from Programa de Cooperación Bilateral CONICET-CSIC and SeCyT-UNC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damián Maestri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maestri, D., Barrionuevo, D., Bodoira, R. et al. Nutritional profile and nutraceutical components of olive (Olea europaea L.) seeds. J Food Sci Technol 56, 4359–4370 (2019). https://doi.org/10.1007/s13197-019-03904-5

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-019-03904-5

Keywords

Navigation