Skip to main content
Log in

Effect of pomegranate peel extract on shelf life of strawberries: computational chemistry approaches to assess antifungal mechanisms involved

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

In Italy Botrytis cinerea represents the most significant disease in strawberry crops and causes major quality and quantity losses in postharvest storage. An alternative strategy to the synthetic fungicides in crop defence could be the use of bioactive compounds with high antifungal activity. This research regards the use of Punica granatum peel extract to extend the shelf life of strawberry and the proposal of a possible mechanism for its antifungal activity. In vitro and in vivo tests showed the ability of pomegranate peel extract to control strawberry gray mould. Fourier transform near infrared spectroscopy showed a high correlation between spectra and disease severity then, a putative molecular mechanism for the interaction of punicalagin on ergosterol of fungal membrane was described by means of computational chemistry approaches. Molecular dynamics simulations were performed by using Gromacs to gain multiconformational representations of either punicalagin and an antifungal compound of clinical relevance, i.e. amphotericin B. The use of grid-based procedures, allowed to shed some light on the molecular mechanism featuring the antifungal activity of punicalagin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson TM, Clay MC, Cioffi AG, Diaz KA, Hisao GS, Tuttle MD, Nieuwkoop AJ, Comellas G, Maryum N, Wang S, Uno BE, Wildeman EL, Gonen T, Rienstra CM, Burke MD (2014) Amphotericin forms an extramembranous and fungicidal sterol sponge. Nat Chem Biol 10(5):400–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baginski M, Resat H, Borowski E (2002) Comparative molecular dynamics simulations of amphotericin B-cholesterol/ergosterol membrane channels. Biochim Biophys Acta 1567:63–78

    Article  CAS  PubMed  Google Scholar 

  • Bendini A, Cerretani L, Di Virgilio F, Belloni P, Bonoli-Carbognin M, Lercker G (2007) Preliminary evaluation of the application of the FT-IR Spectroscopy to control the geographic origin and quality of virgin olive oils. J Food Qual 30:424–437

    Article  CAS  Google Scholar 

  • Berendsen HJC, Postma JPM, van Gunsteren WF, Di Nola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  • Cross S, Cruciani G (2010) Molecular fields in drug discovery: getting old or reaching maturity? Drug Discov Today 15:23–32

    Article  CAS  PubMed  Google Scholar 

  • Darden TA, York DM, Pedersen LG (1993) Particle mesh Ewald: an Nlog(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  • Daura X, Gademann K, Jaun B, Seebach D, van Gunsteren WF, Mark AE (1999) Peptide folding: when simulation meets experiment. Angew Chem Int Ed 38:236–240

    Article  CAS  Google Scholar 

  • Di Qiu M, Shenkin P, Hollinger F, Still W (1997) Continuum model for solvation. A fast analytical method for the calculation of approximate Born radii. J Phys Chem A 101:3005–3014

    Article  CAS  Google Scholar 

  • Fischer UA, Carle R, Kammerer DR (2011) Identification and quantification of phenolic compounds from pomegranate (Punica granatum L.) peel, mesocarp, aril and differently produced juices by HPLC-DAD–ESI/MSn. Food Chem 127:807–821

    Article  CAS  PubMed  Google Scholar 

  • Foss SR, Nakamura CV, Ueda-Nakamura T, Cortez DA, Endo EH, Dias Filho BP (2014) Antifungal activity of pomegranate peel extract and isolated compound punicalagin against dermatophytes. Ann Clin Microbiol Antimicrob 5:13–32

    Google Scholar 

  • Ghannoum MA, Rice LB (1999) Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin Microbiol Rev 12(4):501–517

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hartsel S, Bolard J (1996) Amphotericin B: new life for an old drug. Trends Pharmacol Sci 17:445–449

    Article  CAS  PubMed  Google Scholar 

  • Helbig J (2002) Ability of the antagonistic yeast Cryptococcus albidus to control Botrytis cinerea in strawberry. Biocontrol 47:85–99

    Article  Google Scholar 

  • Hess B, Bekker H, Berendsen HJC, Frajie JCEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  • Johnson L (2003) Dermatophytes—the skin eaters. Mycologist 17:147–149

    Article  Google Scholar 

  • Jones E, Oliphant T, Peterson P (2001) SciPy: open source scientific tools for Python. http://www.scipy.org/

  • Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001) Evaluation and reparameterization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B 105:6474–6487

    Article  CAS  Google Scholar 

  • Landi L, Feliziani E, Romanazzi G (2014) Expression of defense genes in strawberry fruits treated with different resistance inducers. J Agric Food Chem 62:3047–3056

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Reyes JG, Spadaro D, Gullinoa ML, Garibaldi A (2010) Efficacy of plant essential oils on postharvest control of rot caused by fungi on four cultivars of apples in vivo. Flavour Fragr J 25:171–177

    Article  CAS  Google Scholar 

  • Marrone A, Re N, Storchi L (2016) The effects of Ca2+ concentration and E200K mutation on the aggregation propensity of PrPC: a computational study. PLoS ONE 11(12):e0168039. https://doi.org/10.1371/journal.pone.0168039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mlikota Gablera F, Smilanickb JL, Mansourb MF, Karaca H (2010) Influence of fumigation with high concentrations of ozone gas on postharvest gray mold and fungicide residues on table grapes. Postharvest Biol Technol 55(2):85–90

    Article  CAS  Google Scholar 

  • Nabigol A, Morshedi H (2011) Evaluation of the antifungal activity of the Iranian thyme essential oils on the postharvest pathogens of strawberry fruits. Afr J Biotechnol 10(48):9864–9869

    CAS  Google Scholar 

  • O’Boyle NM, Morley C, Hutchison GR (2008) Pybel: a Python wrapper for the OpenBabel cheminformatics toolkit. Chem Cent J 2:5–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romanazzi G, Lichter A, Mlikota Gabler F, Smilanick JL (2012) Recent advances on the use of natural and safe alternatives to conventional methods to control postharvest gray mold of table grapes. Postharvest Biol Technol 63:141–147

    Article  CAS  Google Scholar 

  • Romanazzi G, Feliziani E, Santini M, Landi L (2013) Effectiveness of postharvest treatment with chitosan and other resistance inducers in the control of storage decay of strawberry. Postharvest Biol Technol 75:24–27

    Article  CAS  Google Scholar 

  • Romanazzi G, Smilanick JL, Feliziani E, Droby S (2016) Integrated management of postharvest gray mold on fruits crops. Postharvest Biol Technol 113:69–76

    Article  CAS  Google Scholar 

  • Rongai D, Pulcini P, Pesce B, Milano F (2015) Antifungal activity of some botanical extracts on Fusarium oxysporum. Open Life Sci (previously Cent Eur J Biol) 10:409–416

    CAS  Google Scholar 

  • Rongai D, Pulcini P, Pesce B, Milano F (2017) Antifungal activity of pomegranate peel extract against fusarium wilt of tomato. Eur J Plant Pathol 147:229–238

    Article  CAS  Google Scholar 

  • Storchi L, Paciotti R, Re N, Marrone A (2015) Investigation of the molecular similarity in closely related protein systems: the PrP case study. Prot Struct Funct Bioinform 83:1751–1765

    Article  CAS  Google Scholar 

  • Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the projects “Difesa delle colture con prodotti naturali nella Regione Lazio (DI.CO.PRO.NA.L) financed by the Lazio region.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Rongai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 575 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rongai, D., Sabatini, N., Pulcini, P. et al. Effect of pomegranate peel extract on shelf life of strawberries: computational chemistry approaches to assess antifungal mechanisms involved. J Food Sci Technol 55, 2702–2711 (2018). https://doi.org/10.1007/s13197-018-3192-0

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-018-3192-0

Keywords

Navigation