Skip to main content
Log in

Osmotic dehydration with sorbitol combined with hot air convective drying of apple cubes

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

The aim of the present work was to study the effect of the osmotic dehydration (OD) pre-treatment on the mass transfer kinetics and water activity (aw) of apple cubes during hot air drying. The adequacy of different mathematical models to describe the moisture content of the product during this process was also evaluated. Apple cubes were osmotically dehydrated with sucrose or sorbitol solutions at 60 °C, and then dried by air at 25–80 °C. Overall, the OD and rise of the air temperature resulted in an increased water loss rate and a reduction of the aw. The osmotic agent used in the OD was not relevant to the air drying kinetics, but the pre-treatment with sorbitol solutions produced dried samples with lower aw. Newton’s, Page’s, modified Page’s, Henderson and Pabis’, Two-term, Two-term exponential, Logarithmic, Midilli et al.’s models could describe the moisture content well during the air drying process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

a :

Half of the side of the cube (m)

aw :

Water activity

A, B :

Page’s and Modified Page’s models parameters

a, k :

Henderson and Pabis’ and Two-term exponential models parameters

a, \( k_{1} \), \( k_{2} \) :

Two-term model parameters

a, k, c :

Logarithmic model parameters

a, b :

Wang and Singh’s model parameters

a, k, n, b :

Midilli et al.’s model parameters

a, k, b, B :

Weibull’s model parameters

c, k :

GAB’s model constants

D e :

Effective diffusivity (m2 s−1)

E a :

Activation energy (J mol−1)

k :

Newton’s model parameter

M :

Moisture content (kg water kg dry matter−1)

M m :

Monolayer moisture content (kg water kg dry matter−1)

M 0 :

Initial moisture content (kg water kg dry matter−1)

M :

Moisture content at equilibrium (kg water kg dry matter−1)

OD:

Osmotic dehydration

p :

Arrhenius’s parameter

p ref :

Arrhenius’s parameter at the reference temperatur

R :

Universal gas constant (J mol−1 K−1)

T :

Temperature (°C, K)

t :

Time (s)

w 0 :

Initial weight of the sample (kg)

References

  • An K, Li H, Zhao D, Ding S, Tao H, Wang Z (2013) Effect of osmotic dehydration with pulsed vacuum on hot-air drying kinetics and quality attributes of cherry tomatoes. Dry Technol 31:698–706

    Article  CAS  Google Scholar 

  • A.O.A.C. (2002) Association of the Official Analytical Chemists - Official Methods of Analysis

  • Araya-Farias M, Macaigne O, Ratti C (2014) On the development of osmotically dehydrated seabuckthorn fruits: pretreatments, osmotic dehydration, postdrying techniques, and nutritional quality. Dry Technol 32:813–819

    Article  CAS  Google Scholar 

  • Assis FR, Morais RMSC, Morais AMMB (2016) Mathematical modelling of osmotic dehydration kinetics of apple cubes. J Food Process Preserv. doi:10.1111/jfpp.12895

    Google Scholar 

  • Barbosa-Cánovas GV, Vega-Mercado H (1996) Physical, chemical, and microbiological characteristics of dehydrated foods. In: Barbosa-Cánovas GV (ed) Dehydration of foods. Chapman & Hall, New York, pp 29–100

    Chapter  Google Scholar 

  • Bruijn J, Bórquez R (2014) Quality retention in strawberries dried by emerging dehydration methods. Food Res Int 63:42–48

    Article  Google Scholar 

  • Cano-Chauca M, Ramos AM, Stringheta PC, Marques JA, Silva PI (2004) Curvas de secagem e avaliação da atividade de água da banana passa. Boletim do Centro de Pesquisa de Processamento de Alimentos 22:121–132

    Article  Google Scholar 

  • Corzo O, Bracho N, Vásquez A, Pereira A (2010) Determination of suitable thin layer model for air drying of coroba slices (Attalea Maripa) at different air temperatures and velocities. J Food Process Preserv 34:587–598

    Article  Google Scholar 

  • Farahnaky A, Ansari S, Majzoobi M (2009) Effect of glycerol on the moisture sorption isotherms of figs. J Food Eng 93:468–473

    Article  CAS  Google Scholar 

  • Fernandes FAN, Rodrigues S, Gaspareto OCP, Oliveira EL (2006a) Optimization of osmotic dehydration of bananas followed by air-drying. J Food Eng 77:188–193

    Article  Google Scholar 

  • Fernandes FAN, Rodrigues S, Gaspareto OCP, Oliveira EL (2006b) Optimization of osmotic dehydration of papaya followed by air-drying. Food Res Int 39:492–498

    Article  CAS  Google Scholar 

  • Garcia CC, Caetano LC, de Souza Silva K, Mauro MA (2014) Influence of edible coating on the drying and quality of papaya (Carica papaya). Food Bioprocess Technol 7:2828–2839

    Article  Google Scholar 

  • Hemis M, Raghavan GSV (2014) Effect of convective air attributes with microwave drying of soybean: model prediction and experimental validation. Dry Technol 32:543–549

    Article  CAS  Google Scholar 

  • Hui L, Hetong L, Fang Y, Yife L, Yihui C (2011) Hot-air drying characteristics and kinetics model of litchi pulp. In: New technology of agricultural engineering (ICAE), 2011 International conference on. IEEE, pp 984–988

  • Kaur K, Kumar S, Alam S (2014) Air drying kinetics and quality characteristics of oyster mushroom (Pleurotus ostreatus) influenced by osmotic dehydration. Agric Eng Int CIGR J 16:214–222

    Google Scholar 

  • Kaymak-Ertekin F, Gedik A (2004) Sorption isotherms and isosteric heat of sorption for grapes, apricots, apples and potatoes. LWT-Food Sci Technol 37:429–438

    Article  CAS  Google Scholar 

  • Khan MR (2012) Osmotic dehydration technique for fruits preservation—A review. Pak J Food Sci 22:71–85

    Google Scholar 

  • Kowalski SJ, Mierzwa D (2013) Influence of osmotic pretreatment on kinetics of convective drying and quality of apples. Dry Technol 31:1849–1855

    Article  CAS  Google Scholar 

  • Kowalski SJ, Szadzińska J (2014) Convective-intermittent drying of cherries preceded by ultrasonic assisted osmotic dehydration. Chem Eng Process Process Intensif 82:65–70

    Article  CAS  Google Scholar 

  • Lenart A, Cerkowniak M (1996) Kinetics of convection drying of osmodehydrated apples. Polish J Food Nutr Sci 5:73–82

    Google Scholar 

  • Lopes de Menezes M, Ströher AP, Pereira NC, Barros TD (2013) Análise da cinética e ajustes de modelos matemáticos aos dados de secagem do bagaço do maracujá-amarelo. Engevista 15:176–186

    Google Scholar 

  • Nieto A, Castro MA, Alzamora SM (2001) Kinetics of moisture transfer during air drying of blanched and/or osmotically dehydrated mango. J Food Eng 50:175–185

    Article  Google Scholar 

  • Puente-Díaz L, Echegaray-Pacheco E, Castro-Montero E, Di Scala K (2013) Aplicación de modelos matemáticos al proceso de secado asistido por infrarrojos de descartes de limón (Citrus limon L.) Burm. F. Cv. Genova). Dyna 80:91–97

    Google Scholar 

  • Qian Z, Zhenjiang G, Xuhai Y, Hongwei X, Zheng L, Junwen B, Fanbi M (2011) Model of air impingement drying on line pepper. In: 2011 International conference on new technology of agricultural engineering (ICAE), IEEE, 2011, pp 797–801

  • Ruiz-López II, Huerta-Mora IR, Vivar-Vera MA, Martínez-Sánchez CE, Herman-Lara E (2010) Effect of osmotic dehydration on air-drying characteristics of chayote. Dry Technol 28:1201–1212

    Article  Google Scholar 

  • Sacilik K, Elicin AK (2006) The thin layer drying characteristics of organic apple slices. J Food Eng 73:281–289

    Article  Google Scholar 

  • Simal S, Deyá E, Frau M, Rosselló C (1997) Simple modelling of air drying curves of fresh and osmotically pre-dehydrated apple cubes. J Food Eng 33:139–150

    Article  Google Scholar 

  • Singh B, Gupta AK (2007) Mass transfer kinetics and determination of effective diffusivity during convective dehydration of pre-osmosed carrot cubes. J Food Eng 79:459–470

    Article  CAS  Google Scholar 

  • Unal HG, Sacilik K (2011) Drying characteristics of hawthorn fruits in a convective hot-air dryer. J Food Process Preserv 35:272–279

    Article  Google Scholar 

  • Vega-Gálvez A, Puente-Díaz L, Lemus-Mondaca R, Miranda M, Torres MJ (2014) Mathematical modeling of thin-layer drying kinetics of cape gooseberry (Physalis peruviana L.). J Food Process Preserv 38:728–736

    Article  Google Scholar 

  • Velić D, Planinić M, Tomas S, Bilić M (2004) Influence of airflow velocity on kinetics of convection apple drying. J Food Eng 64:97–102

    Article  Google Scholar 

  • Velickova E, Winkelhausen E, Kuzmanova S (2014) Physical and sensory properties of ready to eat apple chips produced by osmo-convective drying. J Food Sci Technol 51:3691–3701

    Article  CAS  Google Scholar 

  • Yan D, Jianwei J (2012) The characteristics and mathematical model of hot air drying Schisandra. In: 2012 International conference on measurement, information and control (MIC), IEEE, 2012, pp 1006–1010

  • Yu H-M, Zuo C-C, Xie Q-J (2015) Drying characteristics and model of chinese hawthorn using microwave coupled with hot air. Math Probl Eng. doi:10.1155/2015/480752

    Google Scholar 

  • Zielinska M, Zapotoczny P, Alves-Filho O, Eikevik TM, Blaszczak W (2013) A multi-stage combined heat pump and microwave vacuum drying of green peas. J Food Eng 115:347–356

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Funds from FCT – Fundação para a Ciência e Tecnologia through project UID/Multi/50016/2013. The first author acknowledges the financial support of CAPES (1528/13-0). The authors also acknowledge Campotec for graciously supplying the apples for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alcina M. M. B. Morais.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assis, F.R., Morais, R.M.S.C. & Morais, A.M.M.B. Osmotic dehydration with sorbitol combined with hot air convective drying of apple cubes. J Food Sci Technol 54, 3152–3160 (2017). https://doi.org/10.1007/s13197-017-2751-0

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-017-2751-0

Keywords

Navigation