Skip to main content
Log in

Antioxidant and antihypertensive activity of gelatin hydrolysate from Nile tilapia skin

  • Short Communication
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Fish skin, a by-product from fish processing industries, still contains a significant amount of protein-rich material. Gelatin was extracted from Nile tilapia skin with the yield 20.77 ± 0.80 % wet weight. Gelatin was then separately hydrolyzed by proteases, including bromelain, papain, trypsin, flavourzyme, alcalase and neutrase. Low molecular weight gelatin hydrolysate (<10 kDa) has a great potential as an antioxidant agent. Flavourzyme hydrolysate has potent activity on ABTS radical scavenging (1,413.61 ± 88.74 μg trolox/mg protein) and also inhibits the oxidation of linoleic acid at a high level (59.74 ± 16.57 % inhibition). The greatest reducing power is in alcalase hydrolysate (4.951 ± 1.577 mM trolox/mg protein). While, bromelain hydrolysate has the highest ferrous ion chelating activity (86.895 ± 0.061 %). Evaluation of the angiotensin-I-converting enzyme’s inhibitory activity indicates that all hydrolysates have great potency as an antihypertensive agent. All studied tilapia skin gelatin hydrolysates contain potent antioxidant and anti-hypertensive effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Alemán A, Giménez B, Montero P, Gόmez-Guillén MC (2011a) Antioxidant activity of several marine skin gelatins. LWT – food. Sci Technol 44:407–413

    Google Scholar 

  • Alemán A, Pérez-Santín E, Bordenave-Juchereau S, Arnaudin I, Gómez-Guillén MC, Montero P (2011b) Squid gelatin hydrolysates with antihypertensive, anticancer and antioxidant activity. Food Res Int 44:1044–1051

    Article  Google Scholar 

  • Arts MJTJ, Haenen GRMM, Voss HP, Bast A (2004) Antioxidant capacity of reaction products limits the applicability of the Trolox Equivalent Antioxidant Capacity (TEAC) assay. Food Chem Toxicol 42:45–49

    Article  CAS  Google Scholar 

  • Benjakul S, Morrissey MT (1997) Protein hydrolysates from pacific whiting solid wastes. J Agric Food Chem 45:3423–3430

    Article  CAS  Google Scholar 

  • Benjakul S, Visessanguan W, Phongkanpai V, Tanaka M (2005) Antioxidative activity of caramelisation products and their preventive effect on lipid oxidation in fish mince. Food Chem 90:231–239

    Article  CAS  Google Scholar 

  • Borah A, Yadav RNS, Unni BG (2011) In vitro antioxidant and free radical scavenging activity of Alternanthera sessilis. Int J Pharm Sci Res 2:1502–1506

    Google Scholar 

  • Dekkers E, Raghavan S, Kristinsson HG, Marshall MR (2011) Oxidative stability of mahi mahi red muscle dipped in tilapia protein hydrolysates. Food Chem 124:640–645

    Article  CAS  Google Scholar 

  • El-Sayed AM (2006) Tilapia culture. CABI publishing, Oxford, pp 1–24

    Book  Google Scholar 

  • Fernández-Musoles R, Salom JB, Martínez-Maqueda D, Lόpez-Díez JJ, Recio I, Manzanares P (2013) Antihypertensive effects of lactoferrin hydrolyzates: inhibition of angiotensin and endothelin-converting enzyme. Food Chem 139:994–1000

    Article  Google Scholar 

  • Fitzsimmons KM (2004) Development of new products and markets for the global tilapia trade. Proceedings of ISTA 6. Manila, Philippine, pp 624–633

  • Griffin SP, Bhagooli R (2004) Measuring antioxidant potential in corals using the FRAP assay. J Exp Mar Biol Ecol 302:201–211

    Article  CAS  Google Scholar 

  • Gόmez-Guillén MC, Giménez B, López-Caballero ME, Montero MP (2011) Functional and bioactive properties of collagen and gelatin from alternative sources: a review. Food Hydrocoll 25:1813–1827

    Article  Google Scholar 

  • He R, Alashi A, Malomo SA, Girgih AT, Chao D, Ju X, Aluko RE (2013) Antihypertensive and free radical scavenging properties of enzymatic rapeseed protein hydrolysates. Food Chem 141:153–159

    Article  CAS  Google Scholar 

  • Hernández-Ledesma B, Contreras MM, Recio I (2011) Antihypertensive peptides: production, bioavailability and incorporation into foods. Adv Colloid Interf Sci 165:23–25

    Article  Google Scholar 

  • Himaya SWA, Ngo DH, Ryu B, Kim SK (2012) An active peptide purified from gastrointestinal enzyme hydrolysate of pacific cod skin gelatin attenuates angiotensin-1 converting enzyme (ACE) activity and cellular oxidative stress. Food Chem 132:1872–1882

    Article  CAS  Google Scholar 

  • Hsu K (2010) Purification of antioxidative peptides prepared from enzymatic hydrolysates of tuna dark muscle by-product. Food Chem 122:42–48

    Article  CAS  Google Scholar 

  • Ichimaru T, Yamanaka A, Otsuka T, Yamashita E, Maruyaman S (2009) Antihypertensive effect of enzymatic hydrolysate of collagen and gly-pro in spontaneously hypertensive rats. Biosci Biotechnol Biochem 73:2317–2319

    Article  Google Scholar 

  • Li-Chan ECY, Hunag SL, Jao CL, Ho KP, Hsu KC (2012) Peptides derived from atlantic salmon skin gelatin as dipeptidyl-peptidase IV inhibitors. J Agric Food Chem 60:973–978

    Article  CAS  Google Scholar 

  • Lin L, Lv S, Li B (2012) Angiotensin-I-converting enzyme (ACE) inhibitory and antihypertensive properties of squid skin gelatin hydrolysates. Food Chem 131:225–230

    Article  CAS  Google Scholar 

  • Mendis E, Rajapakse N, Kim SK (2005) Antioxidant properties of a radical-scavenging peptide purified from enzymatically prepared fish skin gelatin hydrolysate. J Agric Food Chem 53:581–587

    Article  CAS  Google Scholar 

  • Ovissipour M, Rasco B, Shiroodi SG, Modanlow M, Gholami S, Nemati M (2013) Antioxidant activity of protein hydrolysates from whole anchovy sprat (Clupeonella engrauliformis) prepared using endogenous enzymes and commercial proteases. J Sci Food Agric 93:1718–1726

    Article  CAS  Google Scholar 

  • Park PJ, Je JY, Kim SK (2003) Angiotensin I converting enzyme (ACE) inhibitory activity of hetero-chitooligosaccharides prepared from partially different deacetylated chitosans. J Agric Food Chem 51:4930–4934

    Article  CAS  Google Scholar 

  • Raghavan S, Kristinsson HG (2009) ACE-inhibitory activity of tilapia protein hydrolysates. Food Chem 117:582–588

    Article  CAS  Google Scholar 

  • Schmelzer CEH, Schöps R, Reynell L, Ulbrich-Hofmann R, Neubert RHH, Raith K (2007) Peptic digestion of β-casein: time course and fate of possible bioactive peptides. J Chromatogr A 1166:108–115

    Article  CAS  Google Scholar 

  • Sharp SI, Aarsland D, Day S, Sonnesyn H, Ballard C, Syst A (2011) Hypertension is a potential risk factor for vascular dementia: systematic review. Int J Geriatr Psychiatr 26:661–669

    Article  Google Scholar 

  • Song L, Li T, Yu R, Yan C, Ren S, Zhao Y (2008) Antioxidant activities of hydrolysates of Arca subcrenata prepared with three proteases. Mar Drugs 6:607–619

    Article  CAS  Google Scholar 

  • Songchotikunpan P, Tattiyakul J, Supaphol P (2008) Extraction and electrospinning of gelatin from fish skin. Int J Biol Macromol 42:247–255

    Article  CAS  Google Scholar 

  • Tavano OL (2013) Protein hydrolysis using proteases: an important tool for food biotechnology. J Mol Catal B Enz 90:1–11

    Article  CAS  Google Scholar 

  • Thiansilakul Y, Benjakul S, Shahidi F (2007) Antioxidative activity of protein hydrolysate from round scad muscle using alcalase and flavourzyme. J Food Biochem 31:266–287

    Article  CAS  Google Scholar 

  • Vercruysse L, Van CJ, Smagghie G (2005) ACE inhibitory peptides derived from enzymatic hydrolysates of animal muscle protein, a review. J Agric Food Chem 53:8106–8115

    Article  CAS  Google Scholar 

  • Vo TS, Ngo DH, Kim JA, Ryu BM, Kim SK (2011) An antihypertensive peptide from tilapia gelatin diminishes free radical formation in murine microglial cells. J Agric Food Chem 59:12193–12197

    Article  CAS  Google Scholar 

  • Yang JI, Liang WS, Chow CJ, Siebert KJ (2009) Process for the production of tilapia retorted skin gelatin hydrolysates with optimized antioxidative properties. Process Biochem 44:1152–1157

    Article  CAS  Google Scholar 

  • Zhang YX, Zou AH, Manchu RG, Zhou YC, Wang SF (2008) Purification and antimicrobial activity of antimicrobial protein from brown-spotted grouper, Epinephelus fario. J Zool Syst Evol Res 29:627–632

    CAS  Google Scholar 

  • Zhao Y, Li B, Dong S, Liu Z, Zhao X, Wang J, Zeng M (2009) A novel ACE inhibitory peptide isolated from Acaudina molpadioidea hydrolysate. Pept 30:1028–1033

    Article  CAS  Google Scholar 

  • Zhou P, Yang C, Ren Y, Wang C, Tian F (2013) What are the ideal properties for functional food peptides with antihypertensive effect? a computational peptidology approach. Food Chem 1141:2967–2973

    Article  Google Scholar 

  • Zhuang Y, Sun L (2011) Preparation of reactive oxygen scavenging peptides from tilapia (Oreochromis niloticus) skin gelatin: optimization using response surface methodology. J Food Sci 76:483–489

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the National Research Council of Thailand and the Graduate School of Chiang Mai University for the financial support.

Conflict of Interest

All listed authors have nothing to disclose.

Author Contributions

All experiments were mainly carried out by SC, a Ph.D. candidate, under supervision of HN. While SJ, NR and NS are co-supervisors of SC. The primary supporting grant (National Research Council of Thailand) was given to SJ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hataichanoke Niamsup.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 401 kb)

ESM 2

(PDF 485 kb)

ESM 3

(PDF 748 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choonpicharn, S., Jaturasitha, S., Rakariyatham, N. et al. Antioxidant and antihypertensive activity of gelatin hydrolysate from Nile tilapia skin. J Food Sci Technol 52, 3134–3139 (2015). https://doi.org/10.1007/s13197-014-1581-6

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-014-1581-6

Keywords

Navigation