Skip to main content
Log in

Importance of solvent association in the estimation of antioxidant properties of phenolic compounds by DPPH method

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

The presented paper shows the influence of temperature increase in the range typically used during antioxidant measurements (15–35 °C) on the estimation of antioxidant properties of phenolic compounds (caffeic acid, ferulic acid, gallic acid, trolox, butylhydroxyanisole, butylhydroxytoluene and 2,6-diisopropylphenol) in associating and non-associating solvents. A significant influence of temperature on the DPPH/antioxidant reaction kinetic is observed for strongly associating solvents (e.g. methanol). This trend is less marked for non-associating solvents (e.g. dioxane, ethyl acetate). The performed experiments prove that the change of solvent structure, caused by temperature increase, influences the estimation of antioxidant properties of phenolic compounds much more than the increase of kinetic energy of reacting molecules and/or the increase of the dissociation degree of hydroxyl groups occurring in antioxidants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andrè CM, Larondelle Y, Evers D (2010) Dietary antioxidants and oxidative stress from human and plant perspective: a review. Curr Nutr Food Sci 6:2–12

    Article  Google Scholar 

  • Arnao MB (2000) Some methological problems in the determination of antioxidant using chromogen radicals: a practical case. Trends Food Sci Technol 11:419–421

    Article  CAS  Google Scholar 

  • Bondet V, Brand-Williams W, Berset C (1997) Kinetics and mechanisms of antioxidant activity using the DPPH free radical method. LWT Food Sci Technol 30:609–615

    Article  CAS  Google Scholar 

  • Borowski P, Jaroniec J, Janowski T, Woliński K (2003) Quantum cluster equilibrium theory of hydrogen – bonded liquids: water, methanol and ethanol. Mol Phys 101(10):1413–1421

    Article  CAS  Google Scholar 

  • Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol 28:25–30

    Article  CAS  Google Scholar 

  • Brannan RG, Connolly BI, Decker EA (2001) Peroxynitrite: a potential initiator of lipid oxidation in food. Trends Food Sci Technol 12:164–173

    Article  CAS  Google Scholar 

  • Cosio MS, Buratti S, Mannino S, Benedetti S (2006) Use of an electrochemical method to evaluate the antioxidant activity of herb extracts from the Labiatae family. Food Chem 97:725–731

    Article  CAS  Google Scholar 

  • Dawidowicz AL, Olszowy M (2010) Influence of some experimental variables and matrix components in the determination of antioxidant properties by β-carotene bleaching assay: experiments with BHT used as standard antioxidant. Eur Food Res Technol 231:835–840

    Article  CAS  Google Scholar 

  • Dawidowicz AL, Olszowy M (2011) Antioxidant properties of BHT estimated by ABTS assay in systems differing in pH or metal ion or water concentration. Eur Food Res Technol 232:837–840

    Article  CAS  Google Scholar 

  • Dawidowicz AL, Wianowska D, Olszowy M (2012) On practical problems in estimation of antioxidant activity of compounds by DPPH* method. Food Chem 131:1037–1104

    Article  CAS  Google Scholar 

  • Eskin NAM, Robinson DS (2001) Food shelf life stability; chemical, biochemical and microbiological changes. CRC Press, Washington

    Google Scholar 

  • Grune T, Schringarpure R, Sitte N, Davies K (2001) Age-related changes in protein oxidation and proteolysis in mammalian cells. J Gerontol 56A:B459–B467

    Article  CAS  Google Scholar 

  • Halliwell B, Aeschbach R, Lőliger I, Aruoma OI (1995) The characterization of antioxidants. Food Chem Toxicol 33:601–617

    Article  CAS  Google Scholar 

  • Huang DJ, Ou BX, Prior RL (2005) The chemistry behind antioxidant capacity assays. J Agric Food Chem 53:1841–1856

    Article  CAS  Google Scholar 

  • Janeiro P, Brett AMO (2004) Catechin electrochemical oxidation mechanisms. Anal Chim Acta 518:109–115

    Article  CAS  Google Scholar 

  • Kamlet MJ, Abboud JLM, Abraham MH, Taft RW (1983) Linear salvation energy relationships. 23. A comprehensive collection of the solvatochromic parameters, pi∗, alpha, and beta, and some methods for simplifying the generalized solvatochromic equation. J Org Chem 48:2877–2887

    Article  CAS  Google Scholar 

  • Karadag A, Ozcelik B, Saner S (2009) Review of methods to determine antioxidant capacities. Food Anal Methods 2:41–60

    Article  Google Scholar 

  • Laidler KJ (1987) Chemical kinetics, 3rd edn. Harper & How, New York

    Google Scholar 

  • Ludwig R (1999) Quantum clusters equilibrium theory of liquids: molecular clusters and thermodynamics of liquid ethanol. Mol Phys 97:465–477

    Article  CAS  Google Scholar 

  • Litwinienko G, Ingold KU (2007) Solvent effects on the rates and mechanisms of the reaction of phenols with free radicals. Account Chem Res 40:222–230

    Article  CAS  Google Scholar 

  • Miyabe K, Isogai R (2011) Estimation of molecular diffusivity in liquid phase systems by the Wilke-Chang equation. J Chromatogr A 1218:6636–6645

    Article  Google Scholar 

  • Molyneux P (2004) The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J Sci Technol 26:211–219

    CAS  Google Scholar 

  • Moure A, Cruz JM, Franco D, Dominguez JM, Sineiro J, Dominguez H (2001) Natural antioxidant from residual sources. Food Chem 72:145–171

    Article  CAS  Google Scholar 

  • Namicki M (1990) Antioxidants/antimutagens in food. Food Sci Nutr 29:273–300

    Google Scholar 

  • Ndhlala AR, Moyo M, Staden JV (2010) Natural antioxidants: fascinating or mythical biomolecules? Molecules 15:6905–6930

    Article  CAS  Google Scholar 

  • Noguchi N, Niki E (2000) Phenolic antioxidants: a rationale for design and evolution of novel antioxidant drug for atherosclerosis. Free Radic Biol Med 28:1538–1546

    Article  CAS  Google Scholar 

  • Prior RL, Wu X, Schaich K (2005) Standardized methods for determination of antioxidant capacity and phenolics in food and dietary supplements. J Agric Food Chem 53:4290–4302

    Article  CAS  Google Scholar 

  • Schlesier K, Harwat M, Bohm V, Bitsch R (2002) Assessment of antioxidant activity by using different in vitro methods. Free Radic Res 36:237–242

    Article  Google Scholar 

  • Sen S, Chakraborty R, Sridhar C, Reddy YSR, De B (2010) Free radicals, antioxidants, diseases and phytomedicines: current status and future prospect. Int J Pharm Sci Rev Res 3:91–100

    CAS  Google Scholar 

  • Villaňo D, Fernández- Pachoń MS, Troncoso AM, Garcia-Parrilla MC (2004) The antioxidant activity of wines determined by the ABTS •+ method: influence of sample dilution and time. Talanta 64:501–509

    Article  Google Scholar 

  • Yanai N, Shiotani S, Hagiwara S, Nabetani H, Nakijma M (2008) Antioxidant combination inhibits reactive oxygen species mediated damage. Biosci Biotechnol Biochem 72:3100–3106

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej L. Dawidowicz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dawidowicz, A.L., Olszowy, M. & Jóźwik-Dolęba, M. Importance of solvent association in the estimation of antioxidant properties of phenolic compounds by DPPH method. J Food Sci Technol 52, 4523–4529 (2015). https://doi.org/10.1007/s13197-014-1451-2

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-014-1451-2

Keywords

Navigation