Skip to main content

Advertisement

Log in

Recent developments in applications of MRI techniques for foods and agricultural produce—an overview

  • Review
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

For the detection of defects, evaluation of internal quality and analysis of internal structures in food and biological materials, there is a number of image acquisition techniques available so far. Among them, MRI has the advantage of allowing a variety of measurements to be made that not only contribute to the evaluation of maturity and quality parameters in fruits and vegetables and other food materials but also improve the understanding of underlying physiological processes. So, the ability of MRI to function in a completely non-destructive and to encode molecular dynamics through different contrast mechanism has encouraged developments of many applications in various fields. An overview of MRI as non-destructive detection in quality of food and agricultural produce and its application in postharvest sorting and processing have been presented in this paper. This paper elaborated principle of MRI, function of its components, quality detection methods, and discussed recent research and applications. Since, no paper yet published on MRI, covered so wide applications as included in this work, its importance being increased more.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abbott JA (1999) Quality measurement of fruits and vegetables. Postharvest Biol Technol 15:207–225

    Google Scholar 

  • Abdullah MZ (2008) Image acquisition system. In: Sun D-W (ed) Computer vision technology for food quality evaluation-book. Elsevier Inc., Ch.1, p3–35

  • Adzamli IK, Jolesz FA, Bleier AR, Mulkern RV, Sandor T (1989) The effect of Gadolinium Dtpa on tissue water compartments in slow-twitch and fast twitch rabbit muscles. Magn Reson Med 11(2):172–181

    CAS  Google Scholar 

  • Ahmad MU, Tashiro Y, Matsukawa S, Ogawa M (2005) Comparison of horse mackerel and tillapia surimi gel based on rheological and H-1 NMR relaxation properties. Fish Sci 71(3):655–661

    CAS  Google Scholar 

  • Almeida DPF, Huber DJ (2001) Transient increase in locular pressure and occlusion of endocarpic apertures in ripening tomato fruit. J Plant Physiol 158:199–203

    CAS  Google Scholar 

  • Andaur JE, Guesalaga AR, Agosin EE, Guarini MW, Irarrazaval P (2004) Magnetic resonance imaging for nondestructive analysis of wine grapes. J Agric Food Chem 52(2):165–170

    CAS  Google Scholar 

  • Aursand IG, Erikson U, Veliyulin E (2010) Water properties and salt uptake in Atlantic salmon fillets as affected by ante-mortem stress, rigor mortis, and brine salting: a low-field 1H NMR and 1H/23Na MRI study. Food Chem 120(2):482–489

    CAS  Google Scholar 

  • Barreiro P, Ortiz C, Ruiz-altisent M, Recasens I, Asensio M, Ruiz-cabello J, Fernandez-valle ME (1998b) Mealiness Assessment in Apples and Peaches using MRI (Magn Reson Imaging) Techniques. European Soci Agric Engi, EurAgEng, Oslo, Norway, Aug 24–27, Ag Eng Paper No. 98-F-074

  • Barreiro P, Cabello J, Fernandez-Valle ME, Ortiz C, Ruiz-Altisent M (1999) Mealiness assessment in apples using MRI techniques. Magn Reson Imaging 17(2):275–281

    CAS  Google Scholar 

  • Barreiro P, Ortiz C, Ruiz-Altisent M, Ruiz-Cabello J, Fernandez-Valle ME, Recasens I, Asensio M (2000) Mealiness assessment in apples and peaches using MRI techniques. Magn Reson Imaging 18(9):1175–1181

    CAS  Google Scholar 

  • Barreiro P, Ruiz-Altisent M, Valero C, Garcıa-Ramos FJ (2004) Fruit postharvest technology: instrumental measurement of ripeness and quality. In: Quality handling and evaluation, pp 321–340. Kluwer Academic Publishers, Netherlands

  • Barreiro P, Zheng C, Da-Wen S, Hernandez-Sanchez N, Perez-Sanchez JM, Ruiz-Cabello J (2008) Non-destructive seed detection in mandarins: comparison of automatic threshold methods in FLASH and COMSPIRA MRIs. Postharvest Biol Technol 47:189–198

    CAS  Google Scholar 

  • Ben-Arie R, Segel N, Guelfat-Reich S (1984) The maturation and ripening of the wonderful pomegranate. J Am Soc Hortic Sci 109(6):898–902

    CAS  Google Scholar 

  • Bertram HC, Holdsworth SJ, Whittaker AK, Andersen HJ (2005) Salt diffusion and distribution in meat studied by Na-23 nuclear magnetic resonance imaging and relaxometry. J Agric Food Chem 53(20):7814–7818

    CAS  Google Scholar 

  • Blasco J, Molto E, Alamar MC (2003) Detection of seeds in mandarins using magnetic resonance imaging. In: Proceedings of the 6th International Conference on Applications of Magn Reson Food Sci, Paris, France, p 47

  • Bloch F (1946) Nuclear induction. Phys Rev 70:460–474

    CAS  Google Scholar 

  • Bock C, Sartoris F-J, Portner H-O (2002) In vivoMRspectroscopy and MR imaging on non-anaesthetized marine fish: techniques and first results. Magn Reson Imaging 20:165–172

    Google Scholar 

  • Borompichaichartkul C, Moran G, Srzednicki G, Price WS (2005) Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) studies of corn at subzero temperatures. J Food Eng 69:199–205

    Google Scholar 

  • Brown MA, Semelka, RC (2010a) MRI: basic principles and applications, 4th edn. Wiley-Blackwell

  • Brown MA, Semelka RC (2010b) MRI: basic principles and applications, 4th edn, (Table 1-1 by Mills, 1989, ch. 1, production of net magnetization). Wiley-Blackwell, p 3

  • Burdon J, Clark CJ (2001) Effect of postharvest water loss on ‘Hayward’ kiwifruit water status. Postharvest Biol Technol 22(3):215–225

    Google Scholar 

  • Burton WG (1989) The potato, 3rd edn. Longman Scientific and Technical, New York

    Google Scholar 

  • Callaghan PT, Clark CJ, Forde LC (1994) Use of static and dynamic NMR microscopy to investigate the origins of contrast in images of biological tissues. Biophys Chem 50:225–235

    CAS  Google Scholar 

  • Carlson JW (1987) An algorithm for NMR imaging reconstruction based on multiple RF receiver coils. J Magn Reson 74:376–380

    CAS  Google Scholar 

  • Chayaprasert W, Stroshine R (2005) Rapid sensing of internal browning in whole apples using a low-cost, low-field proton magnetic resonance sensor. Postharvest Biol Technol 36(3):291–301

    Google Scholar 

  • Chen P, McCarthy MJ, Kauten R (1989) NMR for internal quality evaluation of fruits and vegetables. Trans ASAE 32:1741–1753

    Google Scholar 

  • Chen P, McCarthy MJ, Kauten R, Sarig Y, Han S (1993) Maturity evaluation of avocados by NMR methods. J Agric Eng Res 55:177–187

    Google Scholar 

  • Chen P, McCarthy MJ, Kim SM, Zion B (1996) Development of a high speed NMR technique for sensing maturity of avocados. Trans ASAE 39(6):2205–2209

    Google Scholar 

  • Chen B, Zhang W, Kang H-N, Deng Z-W, Wang X-Ru (2006) Fingerprinting Tea by 1H NMR. Chin J Magn Reson 2006 23(2):169–180

    Google Scholar 

  • Christensen DH, Madsen MH (1996) Changes in potato starch quality during growth. Potato Res 39:43–50

    CAS  Google Scholar 

  • Ciampa A, del Abate MT, Masetti O, Valentini M, Sequi P (2010) Seasonal chemical–physical changes of PGI Pachino cherry tomatoes detected by magnetic resonance imaging (MRI). Food Chem 122(4):1253–1260

    CAS  Google Scholar 

  • Clark CJ, Hockings PD, Joyce DC, Mazucco RA (1997) Application of magnetic resonance imaging to pre- and post-harvest studies of fruits and vegetables. Postharvest Biol Technol 11:1–21

    Google Scholar 

  • Clark CJ, MacFall JS, Bieleski R (1998) Loss of watercore from ‘Fuji’ apple observed by magnetic resonance imaging. Sci Hortic 73(4):213–227

    Google Scholar 

  • Collewet G, Strzelecki M, Mariette F (2004) Influence of mri acquisition protocols and image intensity normalization methods on texture classification. Magn Reson Imaging 22(1):81–91

    CAS  Google Scholar 

  • Damadian R (1971) Tumor detection by nuclear magnetic resonance. Science 171(3976):1151–1153

    CAS  Google Scholar 

  • Du C-J, Sun D-W (2004) Recent developments in the applications of image processing techniques for food quality evaluation. Trends Food Sci Technol 15:230–249

    CAS  Google Scholar 

  • Duce SL, Hall LD (1995) Visualization of the hydration of food by nuclear-magnetic-resonance imaging. J Food Eng 26(2):251–257

    Google Scholar 

  • Duce SL, Carpenter TA, Hall LD (1992) Nuclear magnetic resonance imaging of fresh and frozen courgettes. J Food Eng 16:165–172

    Google Scholar 

  • Erikson U, Veliyulin E, Singstad T, Aursand M (2004) Salting and desalting of fresh and frozen thawed cod (Gadus morhua) fillets: a comparative study using 23Na NMR, 23Na MRI, low-field 1H NMR, and physicochemical analytical methods. J Food Sci 69:107–114

    Google Scholar 

  • Evans S, Hall L (2005) Evaluation of a range of MRI-active pH indicators using a multiple-sample method. Am Inst Chem Eng (AIChE) J 51(5):1541–1547

    CAS  Google Scholar 

  • Evans SD, Brambilla A, Lane DM, Torreggiani D (2002) Magnetic resonance imaging of strawberry (Fragaria vesca) slices during osmotic dehydration and air drying. Lebensm Wiss Technol 35(2):177–184

    CAS  Google Scholar 

  • Farkas BE, Singh RP, McCarthy MJ (1992) Measurement of oil/water interface in foods during frying. In: Singh RP, Wirakartakusumah MA (eds) Advances in food engineering. CRC Press, Boca Raton, pp 237–245

    Google Scholar 

  • Fjelkner-Modig S, Persson J, Tornberg E (1986) Sensory and biophysical properties of pork. In: Proceedings, 31st European meeting of meat research workers, 26–30 August 2: 782–785

  • Foucat L, Donnat JP, Martin G, Humbert F, Renou J-P (1997) On-line determination of fat content in ground beef. J Magn Reson Anal 97:108–112

    Google Scholar 

  • Foucat L, Taylor RG, Labas R, Renou JP (2001) Characterization of frozen fish by NMR imaging and histology. Am Lab 33(16):38–43

    Google Scholar 

  • Foucat L, Taylor RG, Labas R, Renou JP (2004) Soft flesh problem in freshwater rainbow trout investigated by magnetic resonance imaging and histology. J Food Sci 69:C320–C327

    Google Scholar 

  • Fourel I, Guillement JP, Le Botlan D (1995) Determination of water droplet size distributions by low resolution PFG--NMR. II. “Solid” Emulsions. J Colloid Interface Sci 169:119–124

    Google Scholar 

  • Gallart-Jornet L, Barat JM, Rustad T, Erikson U, Escriche I, Fito P (2007) A comparative study of brine salting of Atlantic cod (Gadus morhua) and Atlantic salmon (Salmo salar). J Food Eng 79:261–270

    Google Scholar 

  • Gambhir PN, Choi YJ, McCarthy MJ (2004) Development of rapid and non-invasive nuclear magnetic resonance method for identifying freeze damaged citrus fruits. IFT Annual Meeting, Las Vegas, USA

  • Goodman BA, Williamson B, Chudek JA (1993) Identification of the distribution of sugars in grapes using chemical shift selective NMR microscopy. Magn Reson Imaging 11:1039–1041

    CAS  Google Scholar 

  • Goodman BA, Williamson B, Simpson EJ, Chudek JA, Hunter G, Prior DAM (1996) High-field NMR microscopic imaging of cultivated strawberry fruit. Magn Reson Imaging 14(2):187–196

    CAS  Google Scholar 

  • Goudappel GJW, van Duynhoven JPM, Mooren MMW (2001) Measurement of oil droplet size distribution in food oil/water emulsions by time domain pulsed field gradient NMR. J Colloid Interface Sci 239:535–542

    Google Scholar 

  • Gruwel MLH, Ghosh PK, Lata P, Jayas DS (2008) On the diffusion constant of the water wheat. J Agric Food Chem 56:59–62

    CAS  Google Scholar 

  • Guiheneuf TM, Gibbs SJ, Hall LD (1997) Measurement of the inter-diffusion of sodium ions during pork brining by one-dimensional Na-23 magnetic resonance imaging (MRI). J Food Eng 31(4):457–471

    Google Scholar 

  • Guthausen G, Todt H, Burk W, Guthausen A, Kamlowski A (2002) Industrial quality control with time-domain NMR. Bruker Spin Rep 150(151):53–55

    Google Scholar 

  • Henderson RG (1983) Nuclear magnetic resonance imaging: a review. J R Soc Med 76:206–212

    CAS  Google Scholar 

  • Hennel JW, Kryst-Widzgowska T (1995) What is magnetic resonance tomography? publishing house The Institute of Nuclear Physics. H Nuclear Physics, Krakow (in Polish)

  • Hernandez N, Barreiro P, Ruiz-Altisent M, Ruiz-Cabello J, Fernandez-Valle ME (2005) Detection of seeds in citrus using MRI under motion conditions and improvement with motion correction. Concepts Magn Reson Part B Magn Reson Eng 26B(1):81–92

    Google Scholar 

  • Hernandez-Sanchez N, Barreiro P, Ruiz-Cabello J (2006) On-line identification of seeds in Mandarins with magnetic resonance imaging. Biosyst Eng 95(4):529–536

    Google Scholar 

  • Hernandez-Sanchez N, Hills BP, Barreiro P, Marigheto N (2007) An NMR study on internal browning in pears. Postharvest Biol Technol 44:260–270

    CAS  Google Scholar 

  • Hills B (1995) Food processing e an MRI perspective. Trends Food Sci Technol 6:111–117

    CAS  Google Scholar 

  • Hills B (1998) Magnetic reso imaging in food sci. Wiley, New York, p 96

    Google Scholar 

  • Hills BP, Clark CJ (2003) Quality assessment of horticultural products by NMR. Annu Rep spectrosc 50:75–120

    Google Scholar 

  • Hinrichs R, Gotz J, Weisser H (2003) Water-holding capacity and structure of hydrocolloid-gels, WPC-gels and yogurts characterised by means of NMR. Food Chem 82:155–160

    CAS  Google Scholar 

  • Horigane AK, Toyoshima H, Hemmi H, Engelaar WMHG, Okubo A, Nagata T (1999) Internal hollows in cooked rice grains (Oryza sativa cv. Koshihikari) observed by NMR micro imaging. J Food Sci 64(1):1–5

    CAS  Google Scholar 

  • Howell N, Shavila Y, Grootveld M, Williams S (1996) High-resolution NMR and magnetic resonance imaging (MRI) studies on fresh and frozen cod (Gadus morhua) and haddock (Melanogrammus aeglefinus). J Sci Food Agric 72:49–56

    CAS  Google Scholar 

  • Hsiao TC (1973) Plant responses to water stress. Ann Rev Plant Physiol 24:519–570

    CAS  Google Scholar 

  • Hwang SS, Cheng Y-C, Chang C, Lur H-S, Lin Ta-Te (2009) Magnetic resonance imaging and analyses of tempering processes in rice kernels. J Cereal Sci 50(1):36–42

    Google Scholar 

  • Ishida N, Koizumi M, Kano H (1994) Ontogenetic changes in water in cherry tomato fruits measured by nuclear magnetic resonance imaging. Sciential Horticulture 57(4):335–346

    Google Scholar 

  • Ishida N, Kobayashi T, Koizumi M, Kano H (1989) 1H-NMR imaging of tomato fruits. Agric Biol Chem 53(9):2363–2367

    Google Scholar 

  • Ishida N, Naito S, Kano H (2004) Loss of moisture from harvested rice seeds on MRI. Magn Reson Imaging 22:871–875

    Google Scholar 

  • Ishida S, Sugino M, Koizumi N, Shinoda K, Ohsawa N (1995) Serial MRI in early Creutzfeldt-Jacob disease with a point mutation of prion protein at codon 180. Neuroradiology 37(7):531–534

    Google Scholar 

  • Jankowski S (2003) Nuclear magnetic resonance–analytical applications and limitations –– a plenary lecture. Pol J Food Nutr Sci 12/53(SI 2):29–31

    Google Scholar 

  • Jin J (1989) Electromagnetic analysis and design in magnetic resonance imaging. CRC Press LLC., Boca Raton

    Google Scholar 

  • Jin JM (1998) Electromagnetics in magnetic resonance imaging. IEEE Antennas Propag Mag 40(6):7–22

    Google Scholar 

  • Jin Z-Q, Zhang J-S, Lin X-Y (2007) Study on water loss rate and decay of strawberry by NMR and MRI. Food Sci 28(8):108–111

    Google Scholar 

  • Joyce DC, Hockings PD, Mazucco RA, Shorter AJ, Brereton IM (1993) Heat treatment injury of mango fruit revealed by non-destructive magnetic resonance imaging. Postharvest Biol Technol 3:305–311

    CAS  Google Scholar 

  • Joyce DC, Hockings PD, Mazucco RA, Shorter AJ (2002) H-nuclear magnetic resonance imaging of ripening ‘Kensington Pride’ mango fruit. Funct Plant Biol 29:873–879

    Google Scholar 

  • Kauten R, McCarthy MJ (2005) Applications of NMR imaging in processing of foods. In: Gaonkar AG (ed) Food processing: recent developments. Elsevier Science BV, Netherlands, p 2

    Google Scholar 

  • Kerr WL, Kauten RJ, McCarthy MJ, Reid DS (1996) MRI and calorimetric study of freezing rate in potatoes. J Food Process Eng 19:363–384

    Google Scholar 

  • Kerr WL, Reid DS, Kauten RJ, McCarthy MJ (1998) Monitoring the formation of ice during food freezing by magnetic resonance imaging. Lebensm Wiss Technol 31:215–220

    CAS  Google Scholar 

  • Khoshroo A, Keyhani A, Zoroofi RA, Rafiee S, Zamani Z, Alsharif MR (2009) Classification of pomegranate fruit using texture analysis of mr images. Agric Eng Int CIGR EJ 1182, 11

  • Khoshroo A, Keyhani A, Zoroofi RA, Yaghoobi G (2011) Nondestructive Inspection of Pomegranate Maturity using Magnetic Resonance Imaging and Neural Networks. CIGR Section VI International Symposium on Towards a Sustainable Food Chain Food Process, Bioprocess Food Qual Manag Nantes, France - April 18–20

  • Khoshroo AR, Zoroofi A, Keyhani A, Zamani Z, Rafiee S (2006) Pomegranate quality evaluation using machine vision. Abstract book of International Symposium on Pomegranate and Minor Mediterranean Fruits, 16–19 October 2006. Adana, Turkey

  • Krutz GW, Stroshine RL, Wai WK, Ray JA (1993) Quality sorting of sweet cherries using magnetic resonance. Proc ASAE/CSAE Meeting Presentation, Washington, USA, June 20–23, Paper 93–6071

  • Kulkarni AP, Aradhya SM (2005) Chemical changes and antioxidant activity in pomegranate arils during fruit development. Food Chem 93:319–324

    CAS  Google Scholar 

  • Lammertyn J, Dresselaers T, Van Hecke P, Jancsok P, Wevers M, Nicolai BM (2003a) MRI and X-ray CT study of spatial distribution of core breakdown in ‘conference’ pears. Magn Reson Imaging 21(7):805–815

    CAS  Google Scholar 

  • Lammertyn J, Dresselaers T, Van Hecke P, Jacsok P, Wever M, Nicola BM (2003b) Analysis of the time course of core breakdown in ‘Conference’ pears by means of MRI and X-ray CT. Postharvest Biol Technol 29:19–28

    CAS  Google Scholar 

  • Larrigaudiere C, Lentheric I, Puy J, Pinto E (2004) Biochemical characterization of core browning and brown heart disorders in pear by multivariate analysis. Postharvest Biol Technol 31:29–39

    CAS  Google Scholar 

  • Lauterbur PC (1973) Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242:190–191

    CAS  Google Scholar 

  • Lerumeur E, Decertaines J, Toulouse P, Rochcongar P (1987) Water phases in rat striated muscles as determined by T2 proton NMR relaxation-times. Magn Reson Imaging 5(4):267–272

    CAS  Google Scholar 

  • Letala J, Jirakb D, Suderlovaa L, Hajek M (2003) MRI texture analysis of MR images of apples during ripening and storage. Lebensm Wiss Technol 36:719–727

    Google Scholar 

  • Mansfield P, Grannell PK, Maudsley AA (1974) Present clinical status of magnetic resonance imaging. Proceedings 18th Ampere Congress, Nottingham, pp 431–432

  • Marigheto N, Hills B (2005) MRI as a Potential On-line Sensor of Apple Quality. Information and Technology for Sustainable Fruit and Vegetable Production. 16 September, Montpellier France, FRUTIC 05, 12 p 455–464

  • Martens H, Thybo AK, Andersen HJ, Karlsson AH, Donstrup S, Stodkilde-Jorgensen H, Martens M (2002) Sensory analysis for magnetic resonance-image analysis: using human perception and cognition to segment and assess the interior of potatoes. LWT-Food Sci Technol 35(1):70–79

    CAS  Google Scholar 

  • Massantini R, Lanzarotta L, Botondi R, Mencarelli F (1995) The effect of brushing on the ripening response of kiwifruit. Hortic Sci 20(3):566–569

    Google Scholar 

  • Mazucco RA, Joyce DC, Hockings PD (1993) Magnetic resonance imaging applied to harvested mango fruit. Proc. Australasian Postharvest Conf., Gatton, Australia, pp. 355 m 358

  • McCarthy MJ (1994) Magnetic resonance imaging in foods. Chapman & Hall, New York

    Google Scholar 

  • McCarthy MJ, Kauten RJ (1990) Magnetic resonance imaging applications in food research. Trends Food Sci Technol 1:134–139

    CAS  Google Scholar 

  • McCarthy MJ, Zion B, Chen P, Ablett S, Darke AH, Lillford PJ (1995) Diamagnetic susceptibility change in apple tissue after bruising. J Sci Food Agric 67:13–20

    CAS  Google Scholar 

  • McComber DR, Horner HT, Chamborlina MA, Cox D (1994) Potato cultivar differences associated with mealiness. J Agric Food Chem 42:2433–2439

    CAS  Google Scholar 

  • Mencarelli F, Massantini R, Botondi R (1996) Influence of impact surface and temperature on the ripening response of kiwifruit. Postharvest Biol Technol 8:165–177

    Google Scholar 

  • Mikal E, Saltveit Jr (1991) Determining tomato fruit maturity with nondestructive in vivo nuclear magnetic resonance imaging. Postharvest Biol Technol 1(2):153–159

  • Mills AD, Blow JJ, White JG, Amos WB, Wilcock D, Laskey RA (1989) Replication occurs at discrete foci spaced throughout nuclei Replicating in vitro. J Cell Sci 94:471–477

    Google Scholar 

  • Mohoric A, Vergeldt F, Gerkema E, Jager AD, Duynhoven JV, Dalen GV, As HV (2004) Magnetic resonance imaging of single rice kernels during cooking. J Magn Reson 171:157–162

    CAS  Google Scholar 

  • Mohoric A, Vergeldt F, Gerkema E, van Dalen G, van den Doel LR, van Vliet LJ, Van As H, van Duynhoven J (2009) The effect of rice kernel microstructure on cooking behaviour: a combined μ-CT and MRI study. Food Chem 115:1491–1499

    CAS  Google Scholar 

  • Mohsenin NN (1986) Physical properties of plant and animal materials. Structure, physical characteristics and mechanical properties. Gordon and Breach Science Publishers Inc., New York, p 891

    Google Scholar 

  • Musse M, Quellec S, Cambert M, Devaux M-F, Lahaye M, Mariette F (2009a) Monitoring the postharvest ripening of tomato fruit using quantitative MRI and NMR relaxometry. Postharvest Biol Technol 53:22–35

    Google Scholar 

  • Musse M, Quellec S, Devaux M-F, Cambert M, Lahaye M, Mariette F (2009b) An investigation of the structural aspects of the tomato fruit by means of quantitative nuclear magnetic resonance imaging. Magnetic Reson Imaging 27:709–719

    Google Scholar 

  • Newman RH, Redgwell RH (2002) Cell wall changes in ripening kiwifruit: 13C solid state NMR characterisation of relatively rigid cell wall polymers. Carbohydr Polym 49:121–129

    CAS  Google Scholar 

  • Ni QW, Eads TM (1993a) Liquid-phase composition of intact fruit tissue measured by high-resolution proton NMR. J Agric Food Chem 41:1026–1034

    CAS  Google Scholar 

  • Ni QW, Eads TM (1993b) Analysis by proton NMR of changes in liquid-phase and solid-phase components during ripening of banana. J Agric Food Chem 41:1035–1040

    CAS  Google Scholar 

  • Nott KP, Evans SD, Hall LD (1999) The effect of freeze-thawing on the magnetic. Resonance imaging parameters of cod and mackerel. Lebensm Wiss Technol 32:261

    CAS  Google Scholar 

  • Olendorf W, Olendorf W Jr (1991) MRI Primer. Raven Press, New York

  • Otero L, Prestamo G (2009) Effects of pressure processing on strawberry studied by nuclear magnetic resonance. Innov Food Sci Emerg Technol 10(4):434–440

    CAS  Google Scholar 

  • Pope JM, Rumpel H, Kuhn W, Walker R, Leach D, Saratis V (1991) Applications of chemical-shift-selective NMR microscopy to the non-invasive histochemistry of plant materials. Magn Reson Imaging 9:357–363

    CAS  Google Scholar 

  • Povlsen VT, Rinnen A, Van den Berg F, Anderson HJ, Thybo AK (2003) Direct decomposition of NMR relaxation profiles and prediction of sensory attributes of potato samples. Lebensm Wiss Technol 36:423–432

    CAS  Google Scholar 

  • Pruessman KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962

    Google Scholar 

  • Purcell EM, Torrey HC, Pound RV (1946) Resonance absorption by nuclear magnetic moments in a solid. Phys Rev 69:37–38

    CAS  Google Scholar 

  • Ramos-Cabrer P, van Duynhoven JPM, van Dalen G, Nicolay K (2005) MRI: assessment of water transport in food. Cienc Front (Sci Border) 3(1):59–66

    Google Scholar 

  • Renou JP, Kopp J, Valin C (1985) Use of low resolution NMR for determining fat-content in meat products. J Food Technol 20(1):23–29

    CAS  Google Scholar 

  • Rinck PA (2001) Magnetic resonance in medicine. Blackwell, Berlin

    Google Scholar 

  • Roemer PB, Edelstein WA, Hayes VE, Souza SP, Mueller OM (1990) The NMR phased-array. Magn Reson Med 16:192–225

    CAS  Google Scholar 

  • Ruan R, Litchfield JB (1992) Determination of water distribution and mobility inside maize kernels during steeping using magnetic resonance imaging. Cereal Chem 69(1):13–17

    Google Scholar 

  • Salerno A, Pierandrei F, Rea E, Sequi P, Valentini M (2005) Definition of internal morphology and structural changes due to dehydration of radish (Raphanus Sativus L cv. Suprella) using magnetic resonance imaging spectroscopy. J Food Qual 28:428–438

    Google Scholar 

  • Saltveit ME Jr (1991) Determining tomato fruit maturity with nondestructive in vivo nuclear magnetic resonance imaging. Postharvest Biol Technol 2(1):153–159

    Google Scholar 

  • Sequi P, Dell Abate MT, Valentini M (2007) Identification of cherry tomatoes growth origin by means of magnetic resonance imaging. J Sci Food Agric 87:127–132

    CAS  Google Scholar 

  • Shaarani SM, Cardenas-blanco A, Amin MHG, Soon NG, Hall LD (2010) Monitoring development and ripeness of oil palm fruit (Elaeisguneensis) by MRI and bulk NMR. Int J Agric Biol 12:101–105

    Google Scholar 

  • Slaughter (2009) Nondestructive Maturity Assessment in Mangos. www.mango.org (accessed date 8 may 2011)

  • Smith RC, Lange RC (1998) Understanding magnetic resonance imaging, LLC, Florida, USA, CRC Press

  • Sodickson DK, Manning WT (1997) Simultaneous acquisition of spatial harmonics (SMSH): fast imaging with radio frequency coil arrays. Magn Reson Med 38:591–603

    CAS  Google Scholar 

  • Sonego L, Ben-Arie R, Raynal J, Pech JC (1995) Biochemical and physical evaluation of textural characteristics of nectarines exhibiting woolly breakdown: NMR imaging, X-ray computed tomography and pectin composition. Postharvest Biol Technol 5(3):187–198

    Google Scholar 

  • Song HP, Litchfield JB (1994) Measurement of stress cracking in maize kernels by magnetic resonance imaging. J Agric Eng Res 57:109–118

    Google Scholar 

  • Song HP, Delwiche SR, Line MJ (1998) Moisture distribution in a mature soft wheat grain by three-dimensional magnetic resonance imaging. J Cereal Sci 27:191–197

    Google Scholar 

  • Sorland GH, Larsen PM, Lundby F, Rudi A-P, Guiheneuf T (2004) Determination of total fat and moisture content in meat using low field NMR. Meat Sci 66:543–550

    Google Scholar 

  • Stapley AGF, Hyde TM, Gladden LF, Fryer PJ (1997) NMR imaging of the wheat grain cooking process. Int J Food Sci Technol 32(5):355–375

    CAS  Google Scholar 

  • Steen C, Lambelet P (1997) Texture changes in frozen cod mince measured by lowfield nuclear magnetic resonance. J Sci Food Agric 75:268–272

    CAS  Google Scholar 

  • Straadt IK, Thybo AK, Bertram HC (2008) NaCl-induced changes in structure and water mobility in potato tissue as determined by CLSM and LF-NMR. LWT-Food Sci Technol 41(8):1493–1500

    CAS  Google Scholar 

  • Suchanek M, Olejniczak Z (2008) Ocena Jakości Jabłek Za Pomocą Niskopolowej Tomografii Magnetyczno-Rezonansowej. Acta Agrophysica 12(1):183–190

    Google Scholar 

  • Suzuki K, Tajima T, Takano S, Asano T, Hasegawa T (1994) Non destructive methods for identifying injury to vapor heat-treated papaya. J Food Sci 59:855–875

    Google Scholar 

  • Taglienti A, Massantini R, Botondi R, Mencarelli F, Valentini M (2009) Postharvest structural changes of Hayward kiwifruit by means of magnetic resonance imaging spectroscopy. Food Chem 114:1583–1589

    CAS  Google Scholar 

  • Takeuchi S, Fukuoka M, Gomi Y, Maeda M, Watanabe H (1997a) An application of magnetic resonance imaging to the real time measurement of the change of moisture profile in a rice grain during boiling. J Food Eng 33(1–2):181–192

    Google Scholar 

  • Takeuchi S, Maeda M, Gomi Y, Fukuoka M, Watanabe H (1997b) The change of moisture distribution in a rice grain during boiling as observed by NMR imaging. J Food Eng 33:281–297

    Google Scholar 

  • Tang HR, Hills JGB (2000) The distribution of water in native starch granules—a multinuclear NMR study. Carbohydr Polym 43:375–387

    CAS  Google Scholar 

  • Tewari M (1989) NMR microscopy. The non-destructive imaging tool of tomorrow’s materials, biophysical and biomedical research. Eng Sci Rev 31:12–19

    Google Scholar 

  • Thielemann J, Kirkhus T, Kavli T, Schumann-Olsen H, Haugland O, Westavik H (2007) System for estimation of pin bone positions in pre-rigor salmon. Lect Notes Comput Sci 4678:888–896

    Google Scholar 

  • Thybo AK, Bechmann IE, Martens M, Engelsen SB (2000) Prediction of sensory texture of cooked potatoes using uniaxial compression, near infrared spectroscopy and low field 1H NMR spectroscopy. Lebensm Wiss Technol 33:103–111

    CAS  Google Scholar 

  • Thybo AK, Andersen HJ, Karlsson AH, Donstrup S, Stodkilde-Jorgensen H (2003) Low-field NMR relaxation and NMR-imaging as tools in differentiation between potato sample and determination of dry matter content in potatoes. Lebensm Wiss Technol 36(3):315–322

    CAS  Google Scholar 

  • Thybo AK, Jespersen SN, Laerke PE, Stodkilde-Jorgensen HJ (2004a) Nondestructive detection of internal bruise and spraing disease symptoms in potatoes using magnetic resonance imaging. Magn Reson Imaging 22(9):1311–1317

    Google Scholar 

  • Thybo AK, Szczpinski PM, Karlsoon AH, Donstrup S, Stodkilde-Jorgesen HS, Andersen HJ (2004b) Prediction of sensory texture quality attributes of cooked potatoes by NMR-imaging (MRI) of raw potatoes in combination with different image analysis method. J Food Eng 61(1):91–100

    Google Scholar 

  • Thygesen LG, Thybo AK, Engelsen SB (2001) Prediction of sensory texture quality of boiled potatoes from low-field1H NMR of raw potatoes, the role of chemical constituents. Lebensm Wiss Technol 34(7):469–477

    CAS  Google Scholar 

  • Toussaint CA, Médale F, Davenel A, Fauconneau B, Haffray P, Akoka S (2001) Determination of the lipid content in fish muscle by a self-calibrated NMR relaxometry method: comparison with classical extraction methods. J Sci Food Agric 82:173–178

    Google Scholar 

  • Toussaint C, Fauconnea B, Medale F, Collewet G, Akoka S, Haffray P, Davenel A (2005) Description of the heterogeneity of lipid distribution in the flesh of brown trout (Salmo trutta) by MR imaging. Aquaculture 243:255–267

    CAS  Google Scholar 

  • Vaientini M, Sequi P, Ciampa A, Ritota M, Taglienti A, Cozzolino S, Conte L, Terlizzi M (2009) Magnetic resonance imaging for kiwifruit quality evaluation: shelf-life and PGR detection. Italus Hortus 16(5):324–328

    Google Scholar 

  • Van Dalen G, Van Duynhoven JPM, Blonk JCG, Mhoric A, Ramos-Cabrer P, Van Den Doel R (2005) Multidimensional imaging foods using magnetic resonance imaging. GIT Imaging Microsc 7(3):42–44

    Google Scholar 

  • Veliyulin E, Aursand IG (2007) 1H and 23Na MRI studies of Atlantic salmon (Salmo salar) and Atlantic cod (Gadus morhua) fillet pieces salted in different brine concentrations. J Sci Food Agric 87:2676–2683

    CAS  Google Scholar 

  • Veliyulin E, Borge A, Singstad T, Gribbestad I, Erikson U (2006) Post-mortem studies of fish using magnetic resonance imaging. In: Webb GA (ed). Modern Magn Reson 949–956

  • Veliyulin E, Egelandsdal B, Marica F, Balcom BJ (2009) Quantitative 23Na magnetic resonance imaging of model foods. J Agric Food Chem 57:4091–4095

    Google Scholar 

  • Veliyulin E, Felberg HS, Digre H, Martinez I (2007) Non-destructive nuclear magnetic resonance image study of belly bursting in herring (Clupea harengus). Food Chem 101:1562–1568

    Google Scholar 

  • Venturi L, Rocculi P, Cavani C, Placucci G, Rosa MD, Cremonini MA (2007) Water absorption of freeze-dried meat at different water activities: a multianalytical approach using sorption isotherm, differential scanning calorimetry, and nuclear magnetic resonance. J Agric Food Chem 55(26):10572–10578

    CAS  Google Scholar 

  • Vestergaard C, Risum J, Adler-Nissen J (2005) Na-23-MRI quantification of sodium and water mobility in pork during brine curing. Meat Sci 69(4):663–672

    CAS  Google Scholar 

  • Wang Z-M, Lee J-S, Park JY, Wu C-Z, Yuan ZH (2008) Optimization of biodiesel production from trap grease via acid catalyst. Korean J Chem Eng 125:670–674

    Google Scholar 

  • Wang CY, Wang PC (1989) Nondestructive detection of core breakdown in ‘Bartlett’ pears with nuclear magnetic resonance imaging. Hortic Sci 24:106–109

    Google Scholar 

  • Wang SY, Wang PC, Faust M (1988) Non-destructive detection of watercore in apple with nuclear magnetic resonance imaging. Sci Hortic 35(3–4):227–234

    Google Scholar 

  • Wang N, Lin X-Y, Yuan R-S (2007) Study on navel orange storage processing with NMR. Food Sci 28(7):83–87

    Google Scholar 

  • Weglarz WP, Hemelaar M, van der Linden K, Franciosi N, van Dalen G, Windt C, Blonk H, van Duynhoven J, Van As H (2008) Real-time mapping of moisture migration in cereal based food systems with a(w) contrast by means of MRI. Food Chem 106(4):1366–1374

    CAS  Google Scholar 

  • Williamson B, Goodman BA, Chudek JA (1992) Nuclear magnetic resonance (NMR) micro-imaging of ripening red raspberry fruits. New Phytol 120:21–28

    Google Scholar 

  • Yoshioka H, Schlechtyeg PM, Kose K (2009) Magnetic resonance imaging, chapter 3. In: BN Warren Weissman (ed) Imaging of arthritis and metabolic bone disease. Elsevier Inc, pp 34–48

  • Zhou R, Mo Y, Li Y, Zhao Y, Zhang G, Hu Y (2008) Quality and internal characteristics of Huangua pears (Pyrus pyrifolia Nakai, cv, Huanghua) treated with different kinds of coatings during storage. Postharvest Biol Technol 49(1):171–179

    CAS  Google Scholar 

  • Zion B (1994) Detection of internal tissue breakdown in Galia melons by magnetic resonance methods. Annual Report. The Volcani Center Publications, Bet-Dagan

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna Kumar Patel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, K.K., Khan, M.A. & Kar, A. Recent developments in applications of MRI techniques for foods and agricultural produce—an overview. J Food Sci Technol 52, 1–26 (2015). https://doi.org/10.1007/s13197-012-0917-3

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-012-0917-3

Keywords

Navigation