Skip to main content
Log in

Reconstruction of compacta by finite approximations and inverse persistence

  • Published:
Revista Matemática Complutense Aims and scope Submit manuscript

Abstract

The aim of this paper is to show how the homeomorphism and homotopy types of compact metric spaces can be reconstructed by the inverse limit of an inverse sequence of finite approximations of the space. This recovering allows us to propose an alternative way to construct persistence modules from a point cloud.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The definition still holds if we replace F by a commutative ring with unity, obtaining then R modules \(M_i\), but we need this stronger condition for the Structure Theorem.

  2. See [33] and [37] for details.

  3. For more about this topology see  [4, 5].

  4. This is a kind of Mittag–Leffer property (see [29]) for these elements of the inverse limit.

References

  1. Alexandroff, P.: Untersuchungen über Gestalt und Lage abgeschlossener Mengen beliebiger Dimension. Ann. Math. (2) 30(1-4), 101–187 (1928/29)

  2. Alexandroff, P.: Diskrete raüme. Math. Sb. 2, 501–518 (1937)

    MATH  Google Scholar 

  3. Alonso-Morón, M., Cuchillo-Ibañez, E., Luzón, A.: \(\epsilon \)-Connectedness, finite approximations, shape theory and coarse graining in hyperspaces. Phys. D 237(23), 3109–3122 (2008)

    Article  MathSciNet  Google Scholar 

  4. Alonso-Morón, M., Gómez, A.G.: Upper semifinite hyperspaces as unifying tools in normal Hausdorff topology. Topol. Appl. 154(10), 2142–2153 (2007)

    Article  MathSciNet  Google Scholar 

  5. Alonso-Morón, M., González Gómez, A.: Homotopical properties of upper semifinite hyperspaces of compacta. Topol. Appl. 155(9), 972–981 (2008)

    Article  MathSciNet  Google Scholar 

  6. Attali, D., Lieutier, A., Salinas, D.: Vietoris–Rips complexes also provide topologically correct reconstructions of sampled shapes. Comput. Geom. 46(4), 448–465 (2013)

    Article  MathSciNet  Google Scholar 

  7. Barmak, J.A.: Algebraic Topology of Finite Topological Spaces and Applications. Lecture Notes in Mathematics, vol. 2032. Springer, Heidelberg (2011)

    Book  Google Scholar 

  8. Barmak, J.A., Minian, E.G.: Simple homotopy types and finite spaces. Adv. Math. 218(1), 87–104 (2008)

    Article  MathSciNet  Google Scholar 

  9. Barmak, J.A., Minian, E.G.: Automorphism groups of finite posets. Discrete Math. 309(10), 3424–3426 (2009)

    Article  MathSciNet  Google Scholar 

  10. Bilski, P.: On the inverse limits of \(T_0\)-alexandroff spaces. Glas. Mat. 52(72), 207–219 (2017)

    MathSciNet  Google Scholar 

  11. Borsuk, K.: On the imbedding of systems of compacta in simplicial complexes. Fund. Math. 35, 217–234 (1948)

    Article  MathSciNet  Google Scholar 

  12. Borsuk, K.: Concerning homotopy properties of compacta. Fund. Math. 62, 223–254 (1968)

    Article  MathSciNet  Google Scholar 

  13. Carlsson, G.: Topology and data. Bull. Am. Math. Soc. (N.S.) 46(2), 255–308 (2009)

    Article  MathSciNet  Google Scholar 

  14. Carlsson, G., de Silva, V.: Zigzag persistence. Found. Comput. Math. 10(4), 367–405 (2010)

    Article  MathSciNet  Google Scholar 

  15. Chazal, F., Cohen-Steiner, D., Glisse, M., Guibas, L., Oudot, S.: Proximity of persistence modules and their diagrams. In: Proceedings of the 25th Annual Symposium on Computational Geometry, pp. 237–246 (2009)

  16. Clader, E.: Inverse limits of finite topological spaces. Homol. Homot. Appl. 11(2), 223–227 (2009)

    Article  MathSciNet  Google Scholar 

  17. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discrete Comput. Geom. 37(1), 103–120 (2007)

    Article  MathSciNet  Google Scholar 

  18. Edelsbrunner, H., Harer, J.: Persistent homology—a survey. In: Surveys on Discrete and Computational Geometry, Contemp. Math., vol. 453, pp. 257–282. Amer. Math. Soc., Providence (2008)

  19. Edelsbrunner, H., Harer, J.L.: Computational Topology. American Mathematical Society, Providence (2010)

    MATH  Google Scholar 

  20. Freudenthal, H.: Entwicklungen von Räumen und ihren Gruppen. Compos. Math. 4, 145–234 (1937)

    MATH  Google Scholar 

  21. Ghrist, R.: Barcodes: the persistent topology of data. Bull. Am. Math. Soc. (N.S.) 45(1), 61–75 (2008)

    Article  MathSciNet  Google Scholar 

  22. Hausmann, J.C.: On the Vietoris–Rips complexes and a cohomology theory for metric spaces. In: Prospects in Topology (Princeton, NJ, 1994), Ann. of Math. Stud., vol. 138, pp. 175–188. Princeton Univ. Press, Princeton (1995)

  23. Kopperman, R.D., Tkachuk, V.V., Wilson, R.G.: The approximation of compacta by finite \(T_0\)-spaces. Quaest. Math. 26(3), 355–370 (2003)

    MathSciNet  Google Scholar 

  24. Kopperman, R.D., Wilson, R.G.: Finite approximation of compact Hausdorff spaces. In: Proceedings of the 12th Summer Conference on General Topology and its Applications (North Bay, ON, 1997), vol. 22, pp. 175–200 (1997)

  25. Kukieła, M.J.: On homotopy types of Alexandroff spaces. Order 27(1), 9–21 (2010)

    Article  MathSciNet  Google Scholar 

  26. Latschev, J.: Vietoris–Rips complexes of metric spaces near a closed Riemannian manifold. Arch. Math. (Basel) 77(6), 522–528 (2001)

    Article  MathSciNet  Google Scholar 

  27. Mardešić, S.: Approximating topological spaces by polyhedra. In: Ten Mathematical Essays on Approximation in Analysis and Topology, pp. 177–198. Elsevier, Amsterdam (2005)

  28. Mardešić, S., Segal, J.: Shapes of compacta and ANR-systems. Fund. Math. 72(1), 41–59 (1971)

    Article  MathSciNet  Google Scholar 

  29. Mardešić, S., Segal, J.: Shape Theory. The Inverse System Approach. North-Holland Mathematical Library, vol. 26. North-Holland Publishing Co., Amsterdam (1982)

    MATH  Google Scholar 

  30. May, J.P.: Finite spaces and simplicial complexes. http://www.math.uchicago.edu/~may/MISC/SimpCxes.pdf

  31. May, J.P.: Finite topological spaces. http://www.math.uchicago.edu/~may/MISC/FiniteSpaces.pdf

  32. McCord, M.C.: Singular homology groups and homotopy groups of finite topological spaces. Duke Math. J. 33, 465–474 (1966)

    Article  MathSciNet  Google Scholar 

  33. Michael, E.: Topologies on spaces of subsets. Trans. Am. Math. Soc. 71, 152–182 (1951)

    Article  MathSciNet  Google Scholar 

  34. Mondéjar Ruiz, D.: Shape approximations of compacta for inverse persistence. Preprint

  35. Mondéjar Ruiz, D.: Hyperspaces, shape theory and computational topology. Ph.D. Thesis, Universidad Complutense de Madrid (2015)

  36. Morita, K., Nagata, J. (eds.): Topics in General Topology. North-Holland Mathematical Library, vol. 41. North-Holland Publishing Co., Amsterdam (1989)

    MATH  Google Scholar 

  37. Nadler Jr., S.B.: Hyperspaces of Sets. A Text with Research Questions, Monographs and Textbooks in Pure and Applied Mathematics, vol. 49. Marcel Dekker, Inc., New York (1978)

    MATH  Google Scholar 

  38. Niyogi, P., Smale, S., Weinberger, S.: Finding the homology of submanifolds with high confidence from random samples. Discrete Comput. Geom. 39(1–3), 419–441 (2008)

    Article  MathSciNet  Google Scholar 

  39. Niyogi, P., Smale, S., Weinberger, S.: A topological view of unsupervised learning from noisy data. SIAM J. Comput. 40(3), 646–663 (2011)

    Article  MathSciNet  Google Scholar 

  40. Petersen V, P.: A finiteness theorem for metric spaces. J. Differ. Geom. 31(2), 387–395 (1990)

  41. Rham, G.D.: Complexes à automorphismes et homéomorphie différentiable. Ann. Inst. Fourier Grenoble 2, 51–67 (1951) (1950)

  42. Robins, V.: Towards computing homology from finite approximations. In: Proceedings of the 14th Summer Conference on General Topology and its Applications (Brookville, NY, 1999), vol. 24, pp. 503–532 (2001) (1999)

  43. Sanjurjo, J.M.R.: An intrinsic description of shape. Trans. Am. Math. Soc. 329(2), 625–636 (1992)

    Article  MathSciNet  Google Scholar 

  44. Sharpe, R., Beattie, M., Marsden, J.: A universal factorization theorem in topology. Can. Math. Bull. 9, 201–207 (1966)

    Article  MathSciNet  Google Scholar 

  45. Stong, R.E.: Finite topological spaces. Trans. Am. Math. Soc. 123, 325–340 (1966)

    Article  MathSciNet  Google Scholar 

  46. Vejdemo-Johansson, M.: Sketches of a platypus: a survey of persistent homology and its algebraic foundations. In: Algebraic Topology: Applications and New Directions, Contemp. Math., vol. 620, pp. 295–319. Amer. Math. Soc., Providence, RI (2014)

  47. Zomorodian, A., Carlsson, G.: Computing persistent homology. Discrete Comput. Geom. 33(2), 249–274 (2005)

    Article  MathSciNet  Google Scholar 

  48. Zomorodian, A.J.: Topology for Computing. Cambridge Monographs on Applied and Computational Mathematics, vol. 16. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Mondéjar Ruiz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work has been partially supported by the research project PGC2018-098321-B-I00 (MICINN). The first author has been also supported by the FPI Grant BES-2010-033740 of the project MTM2009-07030 (MICINN).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondéjar Ruiz, D., Morón, M.A. Reconstruction of compacta by finite approximations and inverse persistence. Rev Mat Complut 34, 559–584 (2021). https://doi.org/10.1007/s13163-020-00356-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13163-020-00356-w

Keywords

Mathematics Subject Classification

Navigation