Skip to main content
Log in

A sharp blow-up estimate for the Lebesgue norm

  • Published:
Revista Matemática Complutense Aims and scope Submit manuscript

Abstract

We prove that if \(p>1\) and \(\psi :]0,p-1[\rightarrow ]0,\infty [\) is nondecreasing, then

$$\begin{aligned} \sup _{0<\varepsilon<p-1} \psi (\varepsilon ) \Vert f\Vert _{L^{p-\varepsilon }(0,1)}\approx & {} \sup _{0<t<1} \psi \left( \frac{p-1}{1-\log t}\right) \Vert f^*\Vert _{L^{p}(t,1)} \\&\mathop {\Updownarrow }\limits _{{\begin{array}{c} \psi \,\in \,\Delta _2\,\cap \, L^\infty . \end{array}}} \end{aligned}$$

Here f is a Lebesgue measurable function on (0, 1) and \(f^*\) denotes the decreasing rearrangement of f. The proof generalizes and makes sharp an equivalence previously known only in the particular case when \(\psi \) is a power; such case had a relevant role for the study of grand Lebesgue spaces. A number of consequences are discussed, among which: the behavior of the fundamental function of generalized grand Lebesgue spaces, an analogous equivalence in the case the assumption on the monotonicity of \(\psi \) is dropped, and an optimal estimate of the blow-up of the Lebesgue norms for functions in Orlicz–Zygmund spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anatriello, G., Chill, R., Fiorenza, A.: Identification of fully measurable grand Lebesgue spaces. J. Funct. Spaces 2017, 3129186 (2017)

  2. Anatriello, G., Formica, M.R., Giova, R.: Fully measurable small Lebesgue spaces. J. Math. Anal. Appl. 447(1), 550–563 (2017)

  3. Bardaro, C., Musielak, J., Vinti, G.: Nonlinear Integral Operators and Applications, De Gruyter Series in Nonlinear Analysis and Applications, vol. 9. Walter de Gruyter, Berlin (2003)

    Book  MATH  Google Scholar 

  4. Bennett, C., Sharpley, R.: Interpolation of Operators, Pure and Applied Mathematics, vol. 129. Academic Press Inc, Boston, MA (1988)

    MATH  Google Scholar 

  5. Capone, C., Fiorenza, A.: On small Lebesgue spaces. J. Funct. Spaces Appl. 3(1), 73–89 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Capone, C., Formica, M.R., Giova, R.: Grand Lebesgue spaces with respect to measurable functions. Nonlinear Anal. 85, 125–131 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Carozza, M., Moscariello, G., Passarelli di Napoli, A.: Regularity for \(p\)-harmonic equations with right-hand side in Orlicz–Zygmund classes. J. Differ. Equ. 242(2), 248–268 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Černý, R.: Moser–Trudinger inequality in grand Lebesgue space. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 26(2), 177–188 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cobos, F., Kühn, T.: Extrapolation results of Lions–Peetre type. Calc. Var. Partial Differ. Equ. 49(1–2), 847–860 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., Knuth, D.E.: On the Lambert \(W\) function. Adv. Comput. Math. 5(4), 329–359 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Di Fratta, G., Fiorenza, A.: A direct approach to the duality of grand and small Lebesgue spaces. Nonlinear Anal. 70(7), 2582–2592 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. D’Onofrio, L., Sbordone, C., Schiattarella, R.: Grand Sobolev spaces and their applications in geometric function theory and PDEs. J. Fixed Point Theory Appl. 13, 309–340 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fiorenza, A.: Duality and reflexivity in grand Lebesgue spaces. Collect. Math. 51(2), 131–148 (2000)

    MathSciNet  MATH  Google Scholar 

  14. Fiorenza, A., Formica, M.R., Gogatishvili, A.: On grand and small Lebesgue and Sobolev spaces and some applications to PDE’s. Differ. Equ. Appl. 10(1), 21–46 (2018)

    MathSciNet  MATH  Google Scholar 

  15. Fiorenza, A., Formica, M.R., Rakotoson, J.M.: Pointwise estimates for G\(\Gamma -\) functions and applications. Differ. Integral Equ. 30(11–12), 809–824 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Fiorenza, A., Karadzhov, G.E.: Grand and small Lebesgue spaces and their analogs. Z. Anal. Anwendungen 23(4), 657–681 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fiorenza, A., Krbec, M.: On an optimal decomposition in Zygmund spaces. Georgian Math. J. 9(2), 271–286 (2002)

    MathSciNet  MATH  Google Scholar 

  18. Fiorenza, A., Rakotoson, J.M.: Some estimates in \(G\Gamma (p, m, w)\) spaces. J. Math. Anal. Appl. 340(2), 793–805 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fiorenza, A., Rakotoson, J.M.: New properties of small Lebesgue spaces and their applications. Math. Ann. 326(3), 543–561 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gogatishvili, A., Aykol, C., Guliyev, V.S.: Characterization of associate spaces of generalized weighted weak-Lorentz spaces and embeddings. Studia Math. 228(3), 223–233 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gogatishvili, A., Pick, L., Soudský, F.: Characterization of associate spaces of weighted Lorentz spaces with applications. Stud. Math. 224(1), 1–23 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Greco, L., Iwaniec, T., Sbordone, C.: Inverting the p-harmonic operator. Manuscr. Math. 92, 249–258 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Iwaniec, T., Koskela, P., Onninen, J.: Mappings of finite distortion: monotonicity and continuity. Invent. Math. 144(3), 507–531 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jain, P., Singh, M., Singh, A.P.: Duality of fully measurable grand Lebesgue space. Trans. A. Razmadze Math. Inst. 171(1), 32–47 (2017)

    Article  MathSciNet  Google Scholar 

  25. Karapetyants, A., Samko, A.: On grand and small Bergman spaces. Math. Notes 104(3–4), 431–436 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Křepela, M.: Convolution inequalities in weighted Lorentz spaces. Math. Ineq. Appl. 17(4), 1201–1223 (2014)

    MathSciNet  MATH  Google Scholar 

  27. Maligranda, L.: Orlicz spaces and interpolation, Seminários de Matemática [Seminars in Mathematics], vol. 5. Universidade Estadual de Campinas, Departamento de Matemática, Campinas (1989)

  28. Persson, L.E.: Interpolation with a parameter function. Math. Scand. 59(2), 199–222 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pustylnik, E.: Optimal interpolation in spaces of Lorentz–Zygmund type. J. d’Analyse Math. 79, 113–157 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rafeiro, H.: A note on boundedness of operators in grand grand Morrey spaces. Advances in harmonic analysis and operator theory, Oper. Theory Adv. Appl., vol. 229, Birkhäuser/Springer Basel AG, Basel, pp. 349–356 (2013)

  31. Rao, M.M., Ren, Z.D.: Theory of Orlicz spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 146. Marcel Dekker Inc, New York (1991)

    Google Scholar 

  32. Umarkhadzhiev, S. M.: Generalization of the notion of grand Lebesgue space. In: Russian Math. (Iz. VUZ) 58(4), 35–43 (2014), Translation of Izv. Vyssh. Uchebn. Zaved. Mat. 4, 42–51 (2014)

Download references

Acknowledgements

The research of the first and the third author has been partially supported by the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). The third author acknowledges also the support by Università degli Studi di Napoli Parthenope through the Project “Sostegno alla ricerca individuale (annualità 2015–2016–2017)” and the Project “Sostenibilità, esternalità e uso efficiente delle risorse ambientali (triennio 2017–2019)”. The authors are grateful to the anonymous referees for the very detailed reports, rich of pertinent issues. Because of their several comments, the exposition has been significantly improved.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Fiorenza.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farroni, F., Fiorenza, A. & Giova, R. A sharp blow-up estimate for the Lebesgue norm. Rev Mat Complut 32, 745–766 (2019). https://doi.org/10.1007/s13163-019-00294-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13163-019-00294-2

Keywords

Mathematics Subject Classification

Navigation