Skip to main content
Log in

Global regularity and stability of solutions to obstacle problems with nonstandard growth

  • Published:
Revista Matemática Complutense Aims and scope Submit manuscript

Abstract

We study the regularity properties of solutions to the single and double obstacle problem with non standard growth. Our main results are a global reverse Hölder inequality, Hölder continuity up to the boundary, and stability of solutions with respect to continuous perturbations in the variable growth exponent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acerbi, E., Mingione, G.: Regularity results for a class of functionals with non-standard growth. Arch. Ration. Mech. Anal. 156(2), 121–140 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Acerbi, E., Mingione, G.: Regularity results for stationary electro-rheological fluids. Arch. Ration. Mech. Anal. 164, 213–259 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alkhutov, Y.A.: The Harnack inequality and the Hölder property of solutions of nonlinear elliptic equations with a nonstandard growth condition. Differ. Equ. 33(12), 1653–1663 (1997)

    MathSciNet  MATH  Google Scholar 

  4. Alkhutov, Y.A., Krasheninnikova, O.V.: Continuity at boundary points of solutions of quasilinear elliptic equations with a nonstandard growth condition. Izv. Ross. Akad. Nauk Ser. Mat. 68(6), 3–60 (2004)

    MathSciNet  Google Scholar 

  5. Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66(4), 1383–1406 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Diening, L.: Maximal function on generalized Lebesgue spaces \(L\sp {p(\cdot)}\). Math. Inequal. Appl. 7(2), 245–253 (2004)

    MathSciNet  MATH  Google Scholar 

  7. Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics, vol. 2017. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  8. Eleuteri, M.: Hölder continuity results for a class of functionals with non standard growth. Boll. Unione Mat. Ital. 7-B(8), 129–157 (2004)

    MathSciNet  Google Scholar 

  9. Eleuteri, M., Habermann, J.: Regularity results for a class of obstacle problems under non standard growth conditions. J. Math. Anal. Appl. 344(2), 1120–1142 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Eleuteri, M., Habermann, J.: A Hölder continuity result for a class of obstacle problems under non standard growth conditions. Math. Nachr. 284(11–12), 1404–1434 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Eleuteri, M., Habermann, J.: Calderón-Zygmund type estimates for a class of obstacle problems with p(x) growth. J. Math. Anal. Appl. 372(1), 140–161 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Eleuteri, M., Harjulehto, P., Lukkari, T.: Global regularity and stability of solutions to elliptic equations with nonstandard growth. Complex Var. Elliptic Equ. 56(7–9), 599–622 (2011). doi:10.1080/17476930903568399

    MathSciNet  MATH  Google Scholar 

  13. Fan, X., Zhao, D.: A class of De Giorgi type and Hölder continuity. Nonlinear Anal., Theory Methods Appl. 36(3(A)), 295–318 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gariepy, R., Ziemer, W.P.: A regularity condition at the boundary for solutions of quasilinear elliptic equations. Arch. Ration. Mech. Anal. 67(1), 25–39 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gongbao, L., Martio, O.: Stability of solutions of varying degenerate elliptic equations. Indiana Univ. Math. J. 47(3), 873–891 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gongbao, L., Martio, O.: Local and global integrability of gradients in obstacle problems. Ann. Acad. Sci. Fenn. 19, 25–34 (1994)

    MATH  Google Scholar 

  17. Gongbao, L., Martio, O.: Stability and higher integrability of derivatives of solutions in double obstacle problems. J. Math. Anal. Appl. 272, 19–29 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Giaquinta, M.: Multiple Integrals in the Calculus of Variations. Princeton University Press, Princeton (1983)

    MATH  Google Scholar 

  19. Giusti, E.: Direct Methods in the Calculus of Variations. World Scientific, Singapore (2003)

    Book  MATH  Google Scholar 

  20. Hajlasz, P.: Pointwise Hardy inequalities. Proc. Am. Math. Soc. 127(2), 417–423 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Harjulehto, P.: Variable exponent Sobolev spaces with zero boundary values. Math. Bohem. 132(2), 125–136 (2007)

    MathSciNet  MATH  Google Scholar 

  22. Harjulehto, P., Hästö, P., Koskenoja, M., Lukkari, T., Marola, N.: An obstacle problem and superharmonic functions with nonstandard growth. Nonlinear Anal. 67, 3424–3440 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Harjulehto, P., Hästö, P., Lê, Ú.V., Nuortio, M.: Overview of differential equations with non-standard growth. Nonlinear Anal. 72, 4551–4574 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Harjulehto, P., Kinnunen, J., Lukkari, T.: Unbounded supersolutions of nonlinear equations with nonstandard growth, Bound. Value Probl. (2007), Art. ID 48348, 20 pp.

  25. Hästö, P.: On the density of continuous functions in variable exponent Sobolev space. Rev. Mat. Iberoam. 23(1), 215–237 (2007)

    Google Scholar 

  26. Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations. Dover, Mineola (2006). Unabridged republication of the 1993 original

    MATH  Google Scholar 

  27. Hurri, R.: Poincaré domains in ℝn. Ann. Acad. Sci. Fenn., Math. Diss. 71, 1–42 (1988)

    Google Scholar 

  28. Kilpeläinen, T., Malý, J.: Degenerate elliptic equations with measure data and nonlinear potentials. Ann. Sc. Norm. Super. Pisa, Ser. IV XIX, 591–613 (1992)

    Google Scholar 

  29. Kilpeläinen, T., Malý, J.: The Wiener test and potential estimates for quasilinear elliptic equations. Acta Math. 172(1), 137–161 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kilpeläinen, T., Ziemer, W.P.: Pointwise regularity of solutions to nonlinear double obstacle problems. Ark. Mat. 29(1), 83–106 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kováčik, O., Rákosník, J.: On spaces L p(x) and W 1,p(x). Czechoslov. Math. J. 41(116), 592–618 (1991)

    Google Scholar 

  32. Latvala, V., Lukkari, T., Toivanen, O.: The fundamental convergence theorem for p(⋅)-superharmonic functions. Potential Anal. 35(4), 329–351 (2011). doi:10.1007/s11118-010-9215-8

    Article  MathSciNet  MATH  Google Scholar 

  33. Lukkari, T.: Boundary continuity of solutions to elliptic equations with nonstandard growth. Manuscr. Math. 132(3–4), 463–482 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Malý, J., Ziemer, W.P.: Fine Regularity of Solutions of Elliptic Partial Differential Equations. Mathematical Surveys and Monographs, vol. 51. Am. Math. Soc., Providence (1997)

    MATH  Google Scholar 

  35. Maz’ya, V.G.: The continuity at a boundary point of the solutions of quasilinear elliptic equations. Vestn. Leningr. Univ. 25, 42–55 (1970). English translation: Vestnik Leningrad, Univ. Math. 3, 225–242 (1976)

    MATH  Google Scholar 

  36. Michael, J.H., Ziemer, W.P.: Interior regularity for solutions to obstacle problems. Nonlinear Anal. 10(12), 1427–1448 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  37. Michael, J.H., Ziemer, W.P.: Existence of solutions to obstacle problems. Nonlinear Anal. 17(1), 45–71 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ouaro, S., Traore, S.: Entropy solutions to the obstacle problem for nonlinear elliptic problems with variable exponent and L 1-data. Pac. J. Optim. 5(1), 127–141 (2009)

    MathSciNet  MATH  Google Scholar 

  39. Rodrigues, J.F., Sanchón, M., Urbano, J.M.: The obstacle problem for nonlinear elliptic equations with variable growth and L 1-data. Monatsch. Math. 154, 303–322 (2008)

    Article  MATH  Google Scholar 

  40. Rodrigues, J.F., Teymurazyan, R.: On the two obstacle problem in Orlicz–Sobolev spaces and applications. Complex Var. Elliptic Equ. 56(7–9), 769–787 (2011). doi:10.1080/17476933.2010.505016

    MathSciNet  MATH  Google Scholar 

  41. Růžička, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  42. Samko, S.: Denseness of \(C\sp\infty\sb0(\bold R\sp N)\) in the generalized Sobolev spaces \(W\sp{M,P(X)}(\bold R\sp N)\). In: Direct and Inverse Problems of Mathematical Physics (Newark, DE, 1997), Int. Soc. Anal. Appl. Comput., vol. 5, pp. 333–342. Kluwer Academic, Dordrecht (2000)

    Google Scholar 

  43. Zhikov, V.V.: Averaging of functionals of the calculus of variations and elasticity theory. Izv. Akad. Nauk SSSR, Ser. Mat. 50(4), 675–710 (1986)

    MathSciNet  Google Scholar 

  44. Zhikov, V.V.: On Lavrentiev’s phenomenon. Russ. J. Math. Phys. 3(2), 249–269 (1995)

    MathSciNet  MATH  Google Scholar 

  45. Zhikov, V.V.: On some variational problems. Russ. J. Math. Phys. 5(1), 105–116 (1997)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teemu Lukkari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eleuteri, M., Harjulehto, P. & Lukkari, T. Global regularity and stability of solutions to obstacle problems with nonstandard growth. Rev Mat Complut 26, 147–181 (2013). https://doi.org/10.1007/s13163-011-0088-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13163-011-0088-1

Keywords

Mathematics Subject Classification (2000)

Navigation