Skip to main content

Advertisement

Log in

Potential Effects of Projected Decrease in Annual Rainfall on Spatial Distribution of High Andean Wetlands in Southern Peru

  • Original Research
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

High in the Central Andes, wetlands important to people and wildlife occur as medium to small patches within vast montane grasslands. Determining the effects of projected climate change on these high Andean wetlands is hindered by the lack of fine-scale environmental data. We used remote sensing data to develop an estimate of approximately 2.5% for wetland habitat in the study region. Assessing the potential effects of climate change relied on two assumptions. First, mean annual rainfall is an essential variable in the occurrence of wetlands (R2 = 0.82, p < 0.01) within the semi-arid climate of the high Andes. Second, climate change projections indicate a decrease in mean annual rainfall within the study region. In our linear regression model the projected decrease in annual rainfall resulted in a total wetland loss for watersheds within most semi-arid parts of the study region. Here, we provide quantitative data for Andean wetlands to inform conservation and land use decisions. Our study results also suggest that conservation efforts should focus on a more integrative approach including smaller wetlands at the watershed level as well as regions outside protected areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aceituno P (1988) On the functioning of the southern oscillation in the south American sector. Part I: surface climate. Monthly Weather Review 116(3):505–524

    Article  Google Scholar 

  • Alcaraz-Segura D, Cabello J, Paruelo JM, Delibes M (2009) Use of descriptors of ecosystem functioning for monitoring a national park network: a remote sensing approach. Environmental Management 43:38–48

    Article  PubMed  Google Scholar 

  • Baied CA, Wheeler JC (1993) Evolution of high andean puna ecosystems: environment, climate, and culture change over the last 12,000 years in the Central Andes. Mountain Research and Development 13:145–156

    Article  Google Scholar 

  • Baker C, Lawrence R, Montagne C, Patten D (2006) Mapping wetlands and riparian areas using Landsat ETM+ imagery and decision-tree-based models. Wetlands 26:465

    Article  Google Scholar 

  • Baraer M, Mark BG, McKenzie JM, Condom T, Bury J, Huh K-I, Portocarrero C, Gomez J, Rathay S (2012) Glacier recession and water resources in Peru's cordillera Blanca. Journal of Glaciology 58(207):134–150

    Article  Google Scholar 

  • Benham PM, Beckman EJ, DuBay SG, Flores M, Johnson AB, Lelevier MJ, Schmitt CJ, Wright NA, Witt CC (2011) Satellite imagery reveals new critical habitat for endangered bird species in the high Andes of Peru. Endangered Species Research 13(2):145–157

    Article  Google Scholar 

  • Bosman AF, van der Molen PC, Young R, Cleef AM (1993) Ecology of a paramo cushion mire. Journal of Vegetation Science 4:633–640

    Article  Google Scholar 

  • Boyle TP, Caziani SM, Waltermire RG (2004) Landsat TM inventory and assessment of waterbird habitat in the southern altiplano of South America. Wetlands Ecology and Management 12:563–573

    Article  Google Scholar 

  • Browman DL (1983) Andean arid land pastoralism and development. Mountain Research and Development 3(3):241–252

    Article  Google Scholar 

  • Cook K (2009) South American climate variability and change: remote and regional forcing processes. In: Vimeux F, Sylvestre F, Khodri M (eds) Past climate variability in South America and surrounding regions. Springer, Netherlands, pp 193–212

    Chapter  Google Scholar 

  • Cooper D, Wolf E, Colson C (2010) Alpine peatlands of the Andes, Cajamarca, Peru. Arctic, Antarctic, and Alpine Research 42(1):19–33

    Article  Google Scholar 

  • Davenport ML, Nicholson SE (1993) On the relation between rainfall and the normalized difference vegetation index for diverse vegetation types in East Africa. International Journal of Remote Sensing 14:2369–2389

    Article  Google Scholar 

  • Deil U, Alvarez M, Bauer E-M, Ramirez C (2011) The vegetation of seasonal wetlands in extratropical and orotropical South America. Phytocoenologia 41(1):1–34

    Article  Google Scholar 

  • Earle LR, Warner BG, Aravena R (2003) Rapid development of an unusual peat-accumulating ecosystem in the Chilean altiplano. Quaternary Research 59(1):2–11

    Article  Google Scholar 

  • Eisenberg JF, Redford KH (1999) Mammals of the Neotropics, volume 3: the central Neotropics: Ecuador, Peru, Bolivia. University of Chicago Press, Brazil

    Google Scholar 

  • ESRI (2007) ArcGIS Desktop: Release 9.1. Redlands, CA: Environmental Systems Research Institute

  • Finlayson CM, Spiers AG (eds) (1999) Global review of wetland resources and priorities for wetland inventory. Supervising scientist report 144, Wetlands international publication, vol 53. Canberra, Australia

    Google Scholar 

  • Fjeldså J, Krabbe N (1990) Birds of the high Andes. University of Copenhagen and Apollo books. Svendborg, Denmark

    Google Scholar 

  • Fonkén MSM (2014) An introduction to the bofedales of the Peruvian high Andes. Mires and Peat 15(5)

  • Gibbons RE (2012) Bird ecology and conservation in Peru’s high Andean peatlands. PhD dissertation. Louisiana State University, Baton Rouge, Louisiana

    Google Scholar 

  • Gibbons RE, Benham PM, Maley JM (2011) Notes on birds occurring in the high Andes of Peru. Ornitologica Colombiana 11:76–86

    Google Scholar 

  • García E, Otto M (2015) Caracterización ecohidrológica de humedales alto andinos usando imágenes de satélite multitemporales en la cabecera de cuenca del río Santa, Ancash, Perú. Ecología Aplicada 14(2):115–125

  • Haylock M, Peterson T, Alves L et al (2006) Trends in total and extreme south American rainfall in 1960-2000 and links with sea surface temperature. Journal of Climate 19(8):1490–1512

    Article  Google Scholar 

  • Hughes C, Eastwood R (2006) Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proceedings of the National Academy of Sciences 103(27):10334–10339

    Article  CAS  Google Scholar 

  • IGNP (1990) Instituto Geográfico Nacional del Peru - Carta Nacional del Peru, scale: 1:100 000, map sheet 31s–t–33s-T. lima, Peru

  • INRENA (2005) Instituto Nacional de Recursos Naturales – Base de Datos de Recursos Naturales e Infraestructura - Departamento de Arequipa (Primera Aproximación – unpublished)

  • Izquierdo A, Foguet J, Grau H (2015) Mapping and spatial characterization of argentine high Andean peatbogs. Wetlands Ecology and Management 23(5):963–976

    Article  Google Scholar 

  • Jensen J (1986) Introductory digital image processing. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Jenson SK, Domingue JO (1988) Extracting topographic structure from digital elevation data for geographic information system analysis. Photogrammetric Engineering and Remote Sensing 54(11):1593–1600

    Google Scholar 

  • Lauer W (1993) Human development and environment in the Andes: a geoecological overview. Mountain Research and Development 13(2):157–166

    Article  Google Scholar 

  • Lehr E, Kohler G, Street B (2002) The herpetofauna of Central Peru along a transect from the Pacific coast to the high Andes (Amphibia et Reptilia). Faunistische Abhandlungen Museum für Tierkunde Dresden 24:361–392

    Google Scholar 

  • Mächtle B, Eitel B (2013) Fragile landscapes, fragile civilizations - how climate determined societies in the pre-Columbian south Peruvian Andes. Catena 103:62–73

    Article  Google Scholar 

  • Martin J, Runge MC, Nichols JD, Lubow BC, Kendall WL (2009) Structured decision making as a conceptual framework to identify thresholds for conservation and management. Ecological Applications 19(5):1079–1090

    Article  PubMed  Google Scholar 

  • MINAM - Ministerio del Ambiente (2012) Memoria descriptiva del mapa de cobertura vegetal del Perú, Lima Available at: http://www.mtnforum.org/es/content/memoria-descriptiva-del-mapa-de-cobertura-vegetal-del-per%C3%BA. Accessed 18 Aug 2014

  • Nie Y, Li A (2011) Assessment of alpine wetland dynamics from 1976–2006 in the vicinity of Mount Everest. Wetlands 31:875

    Article  Google Scholar 

  • Otto M, Scherer D, Richters J (2011) Hydrological differentiation and spatial distribution of high altitude wetlands in a semi-arid Andean region derived from satellite data. Hydrology and Earth System Sciences 15:1713–1727

    Article  Google Scholar 

  • Ozesmi S, Bauer M (2002) Satellite remote sensing of wetlands. Wetlands Ecology and Management 10:381–402

    Article  Google Scholar 

  • Pettorelli N, Vik JO, Mysterud A, Gaillard JM, Tucker CJ, Stenseth NC (2005) Using the satellite-derived NDVI to assess ecological responses to environmental change, trends Ecol. Evolution 20:503–510

    Google Scholar 

  • Postigo JC, Young KR, Crews KA (2008) Change and continuity in a pastoralist community in the high Peruvian Andes. Human Ecology 36:535–551

    Article  Google Scholar 

  • R Development Core Team (2008) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3–900051–07-0, URL: http://www.R-project.org

  • Rabatel A, Francou B, Soruco A et al (2013) Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. The Cryosphere 7(1):81–102

    Article  Google Scholar 

  • Ramsar (1971) Convention on wetlands of international importance especially as waterfowl habitat. Ramsar, Iran

    Google Scholar 

  • Richard Y, Poccard I (1998) A statistical study of NDVI sensitivity to seasonal and interannual rainfall variations in southern Africa. International Journal of Remote Sensing 19:2907–2920

    Article  Google Scholar 

  • Rundel PW, Smith AP, Meinzer FC (1994) Tropical alpine environments: plant form and function. University Press, Cambridge

    Book  Google Scholar 

  • Ruthsatz B (2012) Vegetation and ecology of the high Andean peatlands of Bolivia. Phytocoenologia 42(3–4):133–179

    Article  Google Scholar 

  • Salvador F, Monerris J, Rochford L (2014) Peatlands of the Peruvian puna ecoregion: types, characteristics and disturbance. Mires and Peat 15(3)

  • Scott DA, Carbonell M (1986) A directory of Neotropical wetlands. International Union for Conservation of nature and natural resources. Conservation Monitoring Centre, International Waterfowl Research Bureau, Gloucester

    Google Scholar 

  • Sellers PJ (1985) Canopy reflectance, photosynthesis and transpiration. International Journal of Remote Sensing 8(6):1335–1372

    Article  Google Scholar 

  • Skrzypek G, Engel Z, Chuman T, Sefrna L (2011) Distichia peat - a new stable isotope paleoclimate proxy for the Andes. Earth and Planetary Science Letters 307(3–4):298–308

    Article  CAS  Google Scholar 

  • Squeo FA, Warner GB, Aravena R, Espinoza D (2006) Bofedales: high altitude peatlands of the Central Andes. Revista Chilena de Historia Natural 79:245–255

    Article  Google Scholar 

  • Swenson J, Young BE, Beck S et al (2012) Plant and animal endemism in the eastern Andean slope: challenges to conservation. BMC Ecology 12(1):1–18

  • Troll C (1968) The cordilleras of the tropical Americas. Aspects of climatic, phytogeographical and agrarian ecology. In: Troll C (ed) Geoecology of the Mountainous Regions of the Tropical Americas. Proceedings of the UNESCO Mexico Symposium 1966 9:15–56

  • Urrutia R, Vuille M (2009) Climate change projections for the tropical Andes using a regional climate model: temperature and precipitation simulations for the end of the 21st century. Journal of Geophysical Research 114(D2)

  • Vuille M, Bradley R, Werner M, Keimig F (2003) 20th century climate change in the tropical Andes: observations and model results. Climate Change 59(1–2):75–99

    Article  Google Scholar 

  • Wetlands International - Ramsar Secretariat (2016) Ramsar Sites Information Service (RSIS), https://rsis.ramsar.org/. Accessed on 28 Jan 2016

  • Wilcox BP, Bryant FC, Wester D, Allen BL (1986) Grassland communities and soils on a high elevation grassland of central Peru. Phytologia 61:231–250

  • Young KR, Lipton JK (2006) Adaptive governance and climate in the tropical high Andes of western South America. Climate Change 78:63–102

    Article  Google Scholar 

Download references

Acknowledgments

Preparation for fieldwork was greatly assisted by T. Valqui whom provided advice for study sites and helped arrange field assistants. Z. Cheviron, S. Figueroa, F. Hernández, C. Santos, V. Cueva, A. Quiñones, L. Alza, J. Nuñez, and A. Quevedo also provided substantial support. Fieldwork assistance was provided by M. Villalba and K. Durand, two Peruvian botanists familiar with high Andean flora. We acknowledge Philipp Buss, former head of the project COPASA-GTZ in Arequipa/Peru, for providing valuable support in transportation and equipment during field studies. Some funding was provided from the National Science Foundation (USA) Grant # DEB 0543562. We are grateful to J.V. Remsen, Jr. for a thorough review that greatly improved the manuscript. The authors do not have any conflicts of interest with any of the funding sources for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Otto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otto, M., Gibbons, R.E. Potential Effects of Projected Decrease in Annual Rainfall on Spatial Distribution of High Andean Wetlands in Southern Peru. Wetlands 37, 647–659 (2017). https://doi.org/10.1007/s13157-017-0896-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-017-0896-2

Keywords

Navigation