Skip to main content

Advertisement

Log in

Assessment of Alpine Wetland Dynamics from 1976–2006 in the Vicinity of Mount Everest

  • Article
  • Published:
Wetlands Aims and scope Submit manuscript

An Erratum to this article was published on 23 August 2011

Abstract

Wetlands provide a range of critically important ecosystem services. However, a lack of reliable wetland data limits the efficacy of wetland management in remote mountainous areas. To optimize the management of wetlands in the vicinity of Mount Everest we created a new classification system for high alpine wetlands. Object-oriented image classifications and geographical information systems were used to extract wetland information for 1976, 1988, and 2006 from remote sensing data and field surveys. The results show that total area of wetlands in the vicinity of Mount Everest in 2006 was 1663.5 km2 mainly found 4100–4800 m above sea level. Wetlands had changed, and the changing area (expansion and contraction) added up to 94.5 km2 or 5.6% from 1976–2006. Temporal-spatial variation in wetlands and land cover imply that regressive succession has occurred in some areas. Natural driving forces are key factors. Data suggest that creation of the Mount Qomolangma (Everest) National Nature Preserve in 1988 positively impacted wetland conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bai JH, Ouyang H, Xu HF, Zhou CP, Qin G (2004) Advances in studies of wetlands in Qinghai-Tibet Plateau. Prog Geogr 23:1–9

    Google Scholar 

  • Blaschke T (2010) Object based image analysis for remote sensing. ISPRS J Photogramm Remote Sens 65:2–16

    Article  Google Scholar 

  • Blaschke T, Hay GJ (2001) Object-oriented image analysis and scale-space: theory and methods for modeling and evaluating multiscale landscape structure. Int Arc Photogram Rem Sens 34:22–29

    Google Scholar 

  • Bwangoy JB, Hansen MC, Roy DP, De Grandi G, Justice CO (2010) Wetland mapping in the Congo Basin using optical and radar remotely sensed data and derived topographical indices. Remote Sens Environ 114:73–86

    Article  Google Scholar 

  • Castañeda C, Ducrot D (2009) Land cover mapping of wetland areas in an agricultural landscape using SAR and Landsat imagery. J Environ Manag 90:2270–2277

    Article  Google Scholar 

  • Castañeda C, Herrero J (2008) Assessing the degradation of saline wetlands in an arid agricultural region in Spain. Catena 72:205–213

    Article  Google Scholar 

  • Cidanlunzhu (1997) Overview of Qomolangma National Nature Preserve. China Tibetology 21:3–22

    Google Scholar 

  • Comprehensive Scientific Expedition Team of Chinese Academy of Sciences in Qinghai-Tibet Plateau (1988) Qinghai-Tibet Plateau scientific expedition series: Tibet vegetation. Science, Beijing

    Google Scholar 

  • Cozar A, Garcia CM, Galvez JA, Loiselle SA, Bracchini L, Cognetta A (2005) Remote sensing imagery analysis of the lacustrine system of Ibera wetland (Argentina). Ecol Model 186:29–41

    Article  Google Scholar 

  • Davis TJ (1994) The Ramsar Convention manual: A guide to the convention on wetlands of international importance especially as waterfowl habitat. Ramsar Convention Bureau, Gland

    Google Scholar 

  • Davranche A, Lefebvre G, Poulin B (2010) Wetland monitoring using classification trees and SPOT-5 seasonal time series. Remote Sens Environ 114:552–562

    Article  Google Scholar 

  • Duan KQ, Yao TD, Pu JC, Sun WZ (2002) Response of monsoon variability in Himalayas to global warming. Chin Sci Bull 47:1842–1845

    Article  Google Scholar 

  • Duan KQ, Thompson LG, Yao TD, Davis ME, Mosley-Thompson E (2007) A 1000 year history of atmospheric sulfate concentrations in southern Asia as recorded by a Himalayan ice core. Geophys Res Lett 34:L1810

    Article  Google Scholar 

  • Epting J, Verbyla D, Sorbel B (2005) Evaluation of remotely sensed indices for assessing burn severity in interior Alaska using Landsat TM and ETM+. Remote Sens Environ 96:328–339

    Article  Google Scholar 

  • Fox JL, Dhondup K, Dorji T (2009) Tibetan antelope Pantholops hodgsonii conservation and new rangeland management policies in the western Chang Tang Nature Reserve, Tibet: is fencing creating an impasse? Oryx 43:183–190

    Article  Google Scholar 

  • Frohn R, Reif M, Lane C, Autrey B (2009) Satellite remote sensing of isolated wetlands using object-oriented classification of Landsat-7 data. Wetlands 29:931–941

    Article  Google Scholar 

  • Gondwe B, Hong S, Wdowinski S, Bauer-Gottwein P (2010) Hydrologic dynamics of the ground-water-dependent Sian Ka’an wetlands, Mexico, derived from InSAR and SAR Data. Wetlands 30:1–13

    Article  Google Scholar 

  • Grapentine J, Kowalski K (2010) Georeferencing large-scale aerial photographs of a great lakes coastal wetland: a modified photogrammetric method. Wetlands 30:369–374

    Article  Google Scholar 

  • Hess LL, Melack JM, Novo EMLM, Barbosa CCF, Gastil M (2003) Dual-season mapping of wetland inundation and vegetation for the central Amazon basin. Remote Sens Environ 87:404–428

    Article  Google Scholar 

  • Jin XY, Paswaters S (2007) A fuzzy rule base system for object-based feature extraction and classification. Proc SPIE 6567:65671H

    Article  Google Scholar 

  • Jones K, Lanthier Y, van der Voet P, van Valkengoed E, Taylor D, Fernández-Prieto D (2009) Monitoring and assessment of wetlands using Earth Observation: The GlobWetland project. J Environ Manag 90:2154–2169

    Article  Google Scholar 

  • Kayranli B, Scholz M, Mustafa A, Hedmark Å (2010) Carbon storage and fluxes within freshwater wetlands: a critical review. Wetlands 30:111–124

    Article  Google Scholar 

  • Keith DA, Rodoreda S, Bedward M (2010) Decadal change in wetland-woodland boundaries during the late 20th century reflects climatic trends. Glob Chang Biol 16:2300–2306

    Article  Google Scholar 

  • Lang M, McCarty G (2009) LiDAR intensity for improved detection of inundation below the forest canopy. Wetlands 29:1166–1178

    Article  Google Scholar 

  • Li Z, Sun WX, Zeng QZ (1999) Deriving glacier change information on the Xizang (Tibetan) Plateau by integrating RS and GIS techniques. Acta Geographica Sinica 54:263–268

    Google Scholar 

  • Liu K, Li X, Shi X, Wang S (2008) Monitoring mangrove forest changes using remote sensing and GIS data with decision-tree learning. Wetlands 28:336–346

    Article  CAS  Google Scholar 

  • MacKay H, Finlayson CM, Fernández-Prieto D, Davidson N, Pritchard D, Rebelo LM (2009) The role of Earth Observation (EO) technologies in supporting implementation of the Ramsar Convention on Wetlands. J Environ Manag 90:2234–2242

    Article  CAS  Google Scholar 

  • McCarthy T, Tooth S, Kotze D, Collins N, Wandrag G, Pike T (2010) The role of geomorphology in evaluating remediation options for floodplain wetlands: the case of Ramsar-listed Seekoeivlei, eastern South Africa. Wetl Ecol Manag 18:119–134

    Article  Google Scholar 

  • McFeeters SK (1996) The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int J Remote Sens 17:1425–1432

    Article  Google Scholar 

  • Mitri GH, Gitas IZ (2004) A performance evaluation of a burned area object-based classification model when applied to topographically and non-topographically corrected TM imagery. Int J Remote Sens 25:2863–2870

    Article  Google Scholar 

  • Mitsch WJ, Gosselink JG (2000) The value of wetlands: importance of scale and landscape setting. Ecol Econ 35:25–33

    Article  Google Scholar 

  • Nie Y, Zhang YL, Liu LS, Zhang JP (2010) Glacial change in the vicinity of Mt. Qomolangma (Everest), central high Himalayas since 1976. J Geogr Sci 20:667–686

    Article  Google Scholar 

  • Niu ZG, Gong P, Cheng X, Guo J, Wang L, Huang H, Shen S, Wu Y, Wang X, Wang X, Ying Q, Liang L, Zhang L, Wang L, Yao Q, Yang Z, Guo Z, Dai Y (2009) Geographical characteristics of China’s wetlands derived from remotely sensed data. Science in China 52:723–738

    Article  Google Scholar 

  • Ozesmi SL, Bauer ME (2002) Satellite remote sensing of wetlands. Wetl Ecol Manag 10:381–402

    Article  Google Scholar 

  • Pan X, Wang B (2009) Time for China to restore its natural wetlands. Nature 459:321

    Article  PubMed  CAS  Google Scholar 

  • Papastergiadou ES, Retalis A, Apostolakis A, Georgiadis T (2008) Environmental monitoring of spatio-temporal changes using remote sensing and GIS in a Mediterranean wetland of Northern Greece. Wat Resour Manag 22:579–594

    Article  Google Scholar 

  • Prigent C, Matthews E, Aires F, Rossow WB (2001) Remote sensing of global wetland dynamics with multiple satellite data sets. Geophys Res Lett 28:4631–4634

    Article  Google Scholar 

  • Qiu J (2008) The third pole. Nature 454:393–396

    Article  PubMed  CAS  Google Scholar 

  • Radoux J, Defourny P (2007) A quantitative assessment of boundaries in automated forest stand delineation using very high resolution imagery. Remote Sens Environ 110:468–475

    Article  Google Scholar 

  • Ramsar Convention Secretariat (2006) The Ramsar Convention manual: a guide to the Convention on Wetlands (Ramsar, Iran, 1971), 4th edn. Ramsar Convention Secretariat, Gland

    Google Scholar 

  • Reif M, Frohn RC, Lane CR, Autrey B (2009) Mapping isolated wetlands in a karst landscape: GIS and remote sensing methods. GISci Rem Sens 46:187–211

    Article  Google Scholar 

  • Shen SP, Wang J, You LJ, Yang MJ, Song Y, Jiang Y (2005) Remote sensing dynamic monitoring of the Zoige marsh wetland. Sichuan J Geology 25:119–121

    Google Scholar 

  • Tibet Bureau of Statistic (2009) Tibet statistical yearbook. China Statistics, Beijing

    Google Scholar 

  • Tibetan Scientific Expedition Team of Chinese Academy of Sciences (1975) Report of scientific expedition in Mt. Qomolangma (Everest) region 1966–1968 (Geography). Science, Beijing

    Google Scholar 

  • Wang GX, Li YS, Wang YB, Chen L (2007) Typical alpine wetland system changes on the Qinghai-Tibet plateau in recent 40 years. Acta Geographica Sinica 62:481–491

    Google Scholar 

  • Watts JD, Lawrence RL, Miller PR, Montagne C (2009) Monitoring of cropland practices for carbon sequestration purposes in north central Montana by Landsat remote sensing. Remote Sens Environ 113:1843–1852

    Article  Google Scholar 

  • Wright C, Gallant A (2007) Improved wetland remote sensing in Yellowstone National Park using classification trees to combine TM imagery and ancillary environmental data. Remote Sens Environ 107:582–605

    Article  Google Scholar 

  • Xie GD, Lu CX, Leng YF, Zheng D, Li SC (2003) Ecological assets valuation of the Tibetan Plateau. J Nat Resour 18:189–196

    Google Scholar 

  • Yang YH, Piao SL (2006) Variations in grassland vegetation cover in relation to climatic factors on the Tibetan Plateau. J Plant Ecol 30:1–8

    Google Scholar 

  • Yang XC, Zhang YL, Zhang W, Yan Y, Wang Z, Ding M, Chu D (2006) Climate change in Mt. Qomolangma region since 1971. J Geogr Sci 16:326–336

    Article  Google Scholar 

  • Yu RH, Li CY, Liu TX, Xu YP (2004) The environment evolution of Wuliangsuhai wetland. J Geogr Sci 14:456–464

    Article  Google Scholar 

  • Zhang W, Zhang YL, Wang ZF, Ding MJ, Yang XC, Lin XD, Liu LS (2007) Vegetation change in the Mt. Qomolangma Nature reserve from 1981 to 2001. J Geogr Sci 17:152–164

    Article  Google Scholar 

  • Zhang SQ, Na XD, Kong B, Wang Z, Jiang H, Yu H, Zhao Z, Li X, Liu C, Dale P (2009) Identifying wetland change in China’s Sanjiang Plain using remote sensing. Wetlands 29:302–313

    Article  CAS  Google Scholar 

  • Zhang YL, Wang CL, Bai WQ, Wang ZF, Tu YL, Yangjaen DG (2010) Alpine wetlands in the Lhasa River Basin, China. J Geogr Sci 20:375–388

    Article  Google Scholar 

  • Zhu WZ, Zhong XH, Fan JR (2003) Characteristics and conservational measures of wetlands ecosystem in Tibet. J Mt Sci 21:7–12

    Google Scholar 

Download references

Acknowledgments

This study was jointly supported by the One Hundred Person Program, Chinese Academy of Sciences (grant 110900K242), National Basic Research Program of China (grant 2010CB951704), and the Strategic Advanced Sciences and Technology Program (grant XDA05050105) of the Chinese Academy of Sciences. Thanks to Rongfu Huang for help with species identification during field surveys. Thanks to Yili Zhang, Linshan Liu, Zhaofeng Wang, Qinqin Zhang, Yingying Wu, Xueru Zhang, and Jiping Zhang for advice on the study design and preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Nie.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s13157-011-0219-y

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nie, Y., Li, A. Assessment of Alpine Wetland Dynamics from 1976–2006 in the Vicinity of Mount Everest. Wetlands 31, 875–884 (2011). https://doi.org/10.1007/s13157-011-0202-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-011-0202-7

Keywords

Navigation