Skip to main content
Log in

Variability and teleconnections of South and East Asian summer monsoons in present and future projections of CMIP5 climate models

  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Coupled Model Inter-comparison Project Phase 5 (CMIP5) model outputs of the South and East Asian summer monsoon variability and their tele-connections are investigated using historical simulations (1861-2005) and future projections under the RCP4.5 scenario (2006-2100). Detailed analyses are performed using nine models having better representation of the recent monsoon teleconnections for the interactive Asian monsoon sub-systems. However, these models underestimate rainfall mainly over South Asia and Korea-Japan sector, the regions of heavy rainfall, along with a bias in location of rainfall maxima. Indeed, the simulation biases, underestimations of monsoon variability and teleconnections suggest further improvements for better representation of Asian monsoon in the climate models. Interestingly, the performance of Australian Community Climate and Earth System Simulator version 1.0 (ACCESS1.0) in simulating the annual cycle, spatial pattern of rainfall and multi-decadal variations of summer monsoon rainfall over South and East Asia appears to more realistic. In spite of large spread among the CMIP5 models, historical simulations as well as future projections of summer monsoon rainfall indicate multi-decadal variability. These rainfall variations, displaying certain epochs of more rainfall over South Asia than over East Asia and vice versa, suggest an oscillatory behaviour. Teleconnections between South and East Asian monsoon rainfall also exhibit a multi-decadal variation with alternate epochs of strengthening and weakening relationship. Furthermore, large-scale circulation features such as South Asian monsoon trough and north Pacific subtropical high depict zonal oscillatory behaviour with east-west-east shifts. Periods with eastward or westward extension of the Mascarene High, intensification and expansion of the upper tropospheric South Asian High are also projected by the CMIP5 models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akiyama, T., 1973: The large-scale aspects of the characteristic features of the baiu front. Pap. Meteorol. Geophys., 24, 157–188.

    Article  Google Scholar 

  • Adler, R. F., and Coauthors, 2003: The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present). J. Hydrometeorol., 4, 1147–1167, doi:10.1175/1525-7541 (2003)004< 1147:TVGPCP>2.0.CO;2.

    Article  Google Scholar 

  • Allan, R., and T. Ansell, 2006: A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850-2004. J. Climate, 19, 5816–5842, doi:10.1175/JCLI3937.1.

    Article  Google Scholar 

  • Annamalai, H., K. Hamilton, and K. R. Sperber, 2007: The south Asian summer monsoon and its relationship to ENSO in the IPCC AR4 simulations. J. Climate, 20, 1071–1092, doi:10.1175/JCLI4035.1.

    Article  Google Scholar 

  • Bavadekar, S. N., and R. M. Khaladkar, 1982: Water vapour transport across the section parallel to west coast of India during contrasting summer monsoon periods. Arch. Meteorol. Geophys. Bioclimatol. A, 31, 243–248, doi:10.1007/BF02258036.

    Article  Google Scholar 

  • Cao, J., J. Hu, and Y. Tao, 2012: An index for the interface between the Indian summer monsoon and the East Asian summer monsoon. J. Geophys. Res., 117, D18108, doi:10.1029/2012JD017841.

    Article  Google Scholar 

  • Covey, C., K. M. AchutaRao, U. Cubasch, P. Jones, S. J. Lambert, M. E. Mann, T. J. Phillips, and K. E. Taylor, 2003: An overview of results from the Coupled Model Intercomparison Project. Global Planet. Change, 37, 103–133, doi:10.1016/S0921-8181(02)00193-5.

    Article  Google Scholar 

  • Day, J. A., I. Fung, and C. Risi, 2015: Coupling of South and East Asian monsoon precipitation in July-August. J. Climate, 28, 4330–4356, doi: 0.1175/JCLI-D-14-00393.1.

    Article  Google Scholar 

  • Ding, Q., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 3483–3505, doi:10.1175/JCLI-3473.1.

    Article  Google Scholar 

  • Ding, Q., and B. Wang, 2007: Intraseasonal interaction between the Eurasian wave train and the Indian summer monsoon. J. Climate, 20, 3751–3767, doi:10.1175/JCLI4221.1.

    Article  Google Scholar 

  • Ding, Y., and D. C. L. Chan, 2005: The East Asian summer monsoon: An overview. Meteor. Atmos. Phys., 89, 117–142, doi:10.1007/s00703-005-0125-z.

    Article  Google Scholar 

  • Ding, Y., and D. R. Sikka, 2006: Synoptic systems and weather. The Asian monsoon. Wang, B. Ed., Springer, 131–202.

    Chapter  Google Scholar 

  • Flohn, H., 1957: Large-scale aspects of “summer monsoon” in South and East Asia. J. Meteor. Soc. Japan, 36, 180–188.

    Article  Google Scholar 

  • Flohn, H., 1960: Recent investigation of the mechanism of the summer monsoon of southern and eastern Asia. Monsoons of the World. Basu, S. et al. Eds., India Meteorological Department, 75–88.

    Google Scholar 

  • Gadgil, S., 2003: Indian monsoon and its variability. Annu. Rev. Earth Planet. Sci., 31, 429–467, doi:10.1146/annurev.earth.31.100901.141251.

    Article  Google Scholar 

  • Gadgil, S., and S. Sajani, 1998: Monsoon precipitation in the AMIP runs. Climate Dyn., 14, 659–689, doi:10.1007/s003820050248.

    Article  Google Scholar 

  • Gao, Q., and J. Wang, 1988: A comparison of the summer precipitation in India with that in China. J. Trop. Meteor., 4, 53–60.

    Google Scholar 

  • Gates, W. L., and Coauthors, 1999: An overview of the results of the Atmospheric Model Intercomparison Project (AMIP I). Bull. Amer. Meteor. Soc., 80, 29–55, doi:10.1175/1520-0477(1999)080<0029:AOOTRO> 2.0.CO;2.

    Article  Google Scholar 

  • Gong, D. Y., and C. H. Ho, 2002: Shift in the summer rainfall over the Yangzte River valley in late 1970s. Geophys. Res. Lett., 29, 78–1-78-4, doi:10.1029/2001gl014523.

    Article  Google Scholar 

  • Goswami, B. N., 2005: The Asian monsoon: Interdecadal variability. The Asian Monsoon. Wang, B. Ed., Springer, 295–327.

    Google Scholar 

  • Goswami, B. N., and R. S. Ajaya mohan, 2001: Intraseasonal oscillations and interannual variability of the Indian summer monsoon. J. Climate, 14, 1180–1198, doi:10.1175/1520-0442(2001)014<1180:IOAIVO>2.0.CO;2.

    Article  Google Scholar 

  • Goswami, B. N., R. H. Kripalani, H. P. Borgaonkar, and B. Preethi, 2015: Multidecadal variability in Indian summer monsoon rainfall using proxy data. World scientific series on Asia-Pacific Weather and Climate, Volume 6: Climate Change: Multidecadal and Beyond. Chang, C. P. et al., Eds., World Scientific Publishing Company, 327–345.

    Google Scholar 

  • Greatbatch, R. J., X. Sun, and X. Q. Yang, 2013: Impact of the variability in the Indian summer monsoon on the East Asian summer monsoon. Atmos. Sci. Lett., 14, 14–19, doi:10.1002/asl2.408.

    Article  Google Scholar 

  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated highresolution grids of monthly climatic observations - the CRU TS3.10 Dataset. Int. J. Climatol., 34, 623–642, doi:10.1002/joc.3711.

    Article  Google Scholar 

  • Hu, Z. Z., R. Wu, J. L. Kinter III, and S. Yang, 2005: Connection of summer rainfall variations in South and East Asia: Role of El Niño southern oscillation. Int. J. Climatol., 25, 1279–1289, doi:10.1002/joc.1159.

    Article  Google Scholar 

  • Huffman, G. J., R. F. Adler, D. T. Bolvin, and G. Gu, 2009: Improving the global precipitation record: GPCP version 2.1. Geophys. Res. Lett., 36, L17808, doi:10.1029/2009GL040000.

    Article  Google Scholar 

  • IPCC, 2001: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Houghton, J. T. et al. Eds., Cambridge University Press, 881 pp.

  • IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Solomon, S. et al. Eds., Cambridge University Press, 996 pp.

  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker, T. F. et al. Eds., Cambridge University Press, 1535 pp.

  • Joseph, P. V., 1976: Climate change in monsoon and cyclones 1891-1974. Proc. The IITM Symposium on Monsoon, Pune, 1976, 378–387.

    Google Scholar 

  • Joseph, P. V., G. Bindu, and B. Preethi, 2016: Impact of the upper tropospheric cooling trend over Central Asia on the Indian summer monsoon rainfall and the Bay of Bengal cyclone tracks. Curr. Sci., 110, 2105–2113.

    Article  Google Scholar 

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–470, doi:10.1175/1520-0477(1996)077<0437: TNYRP>2.0.CO;2.

    Article  Google Scholar 

  • Kang, I.-S., and Coauthors, 2002: Intercomparison of the climatological variations of Asian summer monsoon precipitation simulated by 10 GCMs. Climate Dyn., 19, 383–395, doi:10.1007/s00382-002-0245-9.

    Article  Google Scholar 

  • Kripalani, R. H., A. Kulkarni, and S. V. Singh, 1997: Association of the Indian summer monsoon with the northern hemisphere mid-latitude circulation. Int. J. Climatol., 17, 1055–1067.

    Article  Google Scholar 

  • Kripalani, R. H., A. Kulkarni, and S. V. Singh, 1997a: Rainfall variability over south-east Asia -connections with Indian monsoon and ENSO Extremes: New perspectives. Int. J. Climatol., 17, 1155–1168, doi:10.1002(SICI)1097-0088(199709) 17:11<1155::AID-JOC188>3.0.CO;2-B.

    Article  Google Scholar 

  • Kripalani, R. H., A. Kulkarni, and S. V. Singh, 1997b: Climatic impact of EI Niño/La Niña on the Indian monsoon: A new perspective. Weather, 52, 39–46, doi:10.1002/j.1477-8696. 1997.tb06267.x.

    Article  Google Scholar 

  • Kripalani, R. H., A. Kulkarni, and S. V. Singh, 2001: Monsoon rainfall variations and teleconnections over south and east Asia. Int. J. Climatol., 21, 603–616, doi:10.1002/joc.625.

    Article  Google Scholar 

  • Kripalani, R. H., A. Kulkarni, and S. V. Singh, 1993: Large scale aspects of India-China summer monsoon rainfall. Adv. Atmos. Sci., 10, 71–84, doi:10.1007/BF 02656955.

    Article  Google Scholar 

  • Kripalani, R. H., B.-J. Kim, J.-H. Oh, and S.-E. Moon, 2002: Relation between Soviet snow and Korean rainfall. Int. J. Climatol., 22, 1313–1325, doi:10.1002/joc.809.

    Article  Google Scholar 

  • Kripalani, R. H., J.-H. Oh, A. Kulkarni, S. S. Sabade, and H. S. Chaudhari, 2007a: South Asian summer monsoon precipitation variability: Coupled climate model simulations and projections under IPCC AR4. Theor. Appl. Climatol., 90, 133–159, doi:10.1007/s00704-006-0282-0.

    Article  Google Scholar 

  • Kripalani, R. H., J.-H. Oh, and H. S. Chaudhari, 2007b: Response of the East Asian summer monsoon to doubled atmospheric CO2: Coupled climate model simulations and projections under IPCC AR4. Theor. Appl. Climatol., 87, 1–28, doi:10.1007/s00704-006-0238-4.

    Article  Google Scholar 

  • Krishnamurti, T. N., and H. N. Bhalme, 1976: Oscillations of a monsoon system. Part 1. Observational aspects. J. Atmos. Sci., 33, 1937–1954, doi:10.1175/1520-0469(1976)033<1937:OOAMSP>2.0.CO;2.

    Article  Google Scholar 

  • Krishnamurti, T. N., and N. Surgi, 1987: Observational aspects of summer monsoon. Monsoon Meteorology. Chang, C. P. et al. Eds., Oxford University Press, 3–27.

    Google Scholar 

  • Krishnan, R., and M. Sugi, 2001: Baiu rainfall variability and associated monsoons teleconnections. J. Meteor. Soc. Japan, 79, 851–860, doi: 10.2151/jmsj.79.851.

    Article  Google Scholar 

  • Lambert, S. J., and G. J. Boer, 2001: CMIP1 evaluation and intercomparison of coupled climate models. Climate Dyn., 17, 83–106, doi:10.1007/PL00013736.

    Article  Google Scholar 

  • Lau, K. M., and M. T. Li, 1984: The monsoon of east Asia and its global association - A survey. Bull. Amer. Meteor. Soc., 65, 114–125, doi:10.1175/1520-0477(1984)065<0114:TMOEAA>2.0.CO;2.

    Article  Google Scholar 

  • Lee, E.-J., K.-J. Ha, and J.-G. Jhun, 2014: Interdecadal changes in interannual variability of the global monsoon precipitation and interrelationships among its subcomponents. Climate Dyn., 42, 2585–2601, doi:10.1007/s00382-013-1762-4.

    Article  Google Scholar 

  • Lee, J.-Y., B. Wang, Q. Ding, K.-J. Ha, J.-B. Ahn, A. Kumar, B. Stern, and O. Alves, 2011: How predictable is the Northern Hemisphere summer upper-tropospheric circulation? Climate Dyn., 37, 1189–1203, doi:10. 1007/s00382-010-0909-9.

    Article  Google Scholar 

  • Li, R., S. Lv, B. Han, Y. Gao, and X. Meng, 2017: Projections of South Asian summer monsoon precipitation based on 12 CMIP5 models. Int. J. Climatol., 37, 94–108, doi:10.1002/joc.4689.

    Article  Google Scholar 

  • Ma, H., and Y. Ding, 1997: The present status and future research of the east Asian monsoon. Adv. Atmos. Sci., 14, 125–140, doi:10.1007/s00376-997-0015-z.

    Article  Google Scholar 

  • Meehl, G. A., G. J. Boer, C. Covey, M. Latif, and R. J. Stouffer, 2000: The coupled model intercomparison project (CMIP). Bull. Amer. Meteor. Soc., 81, 313–318, doi:10.1175/1520-0477(2000)081<0313:TCMIPC>2.3.CO;2.

    Article  Google Scholar 

  • Meehl, G. A., C. Covey, B. McAvaney, M. Latif, and R. J. Stouffer, 2005: Overview of the coupled model intercomparison project. Bull. Amer. Meteor. Soc., 86, 89–93, doi:10.1175/BAMS-86-1-89.

    Article  Google Scholar 

  • Mujumdar, M., B. Preethi, T. P. Sabin, K. Ashok, S. Saeed, D. S. Pai, and R. Krishnan, 2012: The Asian summer monsoon response to the La Niña event of 2010. Meteor. Appl., 19, 216–225, doi:10.1002/met.1301.

    Article  Google Scholar 

  • Murakami, T., 1959: The general circulation and water vapour balance over the Far East during the rainy season. Geophys. Mag., 29, 131–171.

    Google Scholar 

  • Oh, J.-H., W.-T. Kwon, and S.-B. Ryoo, 1997: Review of the researches on Changma and future observational study (KORMEX). Adv. Atmos. Sci., 14, 207–222, doi:10.1007/s00376-997-0020-2.

    Article  Google Scholar 

  • Pant, G. B., and K. Rupa Kumar, 1997: Climates of South Asia. John Wiley and Sons: Chichester, pp 344.

    Google Scholar 

  • Preethi, B., J. V. Revadekar, and A. A. Munot, 2011a: Extremes in summer monsoon precipitation over India during 2001-2009 using CPC high resolution data. Int. J. Remote Sens., 32, 717–735, doi:10.1080/01431161.2010.517795.

    Article  Google Scholar 

  • Preethi, B., J. V. Revadekar, and R. H. Kripalani, 2011b: Anomalous behaviour of the Indian summer monsoon 2009. J. Earth Syst. Sci., 5, 783–794, doi: 10.1007/s12040-011-0112-3.

    Article  Google Scholar 

  • Preethi, B., R. H. Kripalani, and K. Krishna Kumar, 2010: Indian summer monsoon rainfall variability in global coupled ocean-atmosphere models. Climate Dyn., 35, 1521–1539, doi:10.1007/s00382-009-0657-x.

    Article  Google Scholar 

  • Preethi, B., M. Mujumdar, R. H. Kripalani, A. Prabhu, and R. Krishnan, 2016: Recent trends and teleconnections among South and East Asian monsoons in a warming environment. Climate Dyn., 48, 1–17, doi: 10.1007/s00382-016-3218-0.

    Google Scholar 

  • Ramamurthy, K., 1969: Monsoon of India: Some aspects of the ‘break’ in the Indian southwest monsoon during July and August. Forecasting Manual, 1, 1–57.

    Google Scholar 

  • Roxy, M. K., K. Ritika, P. Terray, and S. Masson, 2014: The curious case of Indian ocean warming. J. Climate, 27, 8501–8509, doi:10.1175/JCLID-14-00471.1.

    Article  Google Scholar 

  • Sabeerali, C. T., S. A. Rao, A. R. Dhakate, K. Salunke, and B. N. Goswami, 2015: Why ensemble mean projection of South Asian monsoon rainfall by CMIP5 models is not reliable. Climate Dyn., 45, 161–174, doi:10.1007/s00382-014-2269-3.

    Article  Google Scholar 

  • Saha, K. R., and S. N. Bavadekar, 1977: Moisture flux across the west coast of India and rainfall during the southwest monsoon. Quart. J. Roy. Meteor. Soc., 103, 370–374.

    Article  Google Scholar 

  • Sikka, D. R., and S. Gadgil, 1980: On the maximum cloud zone and the ITCZ over India longitude during the southwest monsoon. Mon. Wea. Rev., 108, 1840–1853.

    Article  Google Scholar 

  • Sperber, K. R., H. Annamalai, I.-S. Kang, A. Kitoh, A. Moise, A. Turner, B. Wang, and T. Zhou, 2013: The Asian summer monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Climate Dyn., 41, 2711–2744, doi:10.1007/s00382-012-1607-6.

    Article  Google Scholar 

  • Tao, S. Y., and F. K. Zhu, 1964: The 100-mb flow patterns in southern Asia in summer and its relation to the advance and retreat of the west-Pacific subtropical anticyclone over the Far East. Acta Meteorol. Sin., 34, 385–396.

    Google Scholar 

  • Tao, S. Y., and L. X. Chen, 1987: A review of recent research on the EASM in China. Monsoon Meteorology. Chang, C. P. et al. Eds., Oxford University Press, 60–92.

    Google Scholar 

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485–498, doi:10.1175/BAMS-D-11-00094.1.

    Article  Google Scholar 

  • Waliser, D. E., and Coauthors, 2003: AGCM simulations of intra-seasonal variability associated with the Asian summer monsoon. Climate Dyn., 21, 423–446, doi:10.1007/s00382-003-0337-1.

    Article  Google Scholar 

  • Wang, B., R. Wu, and X. Fu, 2000: Pacific-East Asian teleconnection: How does ENSO affect east Asian climate? J. Climate, 13, 151–1536, doi:10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    Google Scholar 

  • Wang, B., S. C. Clemens, and P. Liu, 2003: Contrasting the Indian and East Asian monsoons: Implications on geologic timescales. Mar. Geol., 201, 5–21, doi:10.1016/S0025-3227(03)00196-8.

    Article  Google Scholar 

  • Wang, B., I.-S. Kang, and Y.-J. Lee, 2004: Ensemble simulations of Asian-Australian monsoon variability during 1997/1998 El Niño by 11AGCMs. J. Climate, 17, 803–818, doi:10.1175/1520-0442(2004)017<0803:ESOAMV>2.0.CO;2.

    Article  Google Scholar 

  • Wei, W., R. Zhang, M. Wen, X. Rong, and T. Li, 2014: Impact of Indian summer monsoon on the South Asian High and its influences on summer rainfall over China. Climate Dyn., 43, 1257–1269, doi:10.1007/s00382-013-1938-y.

    Article  Google Scholar 

  • Wei, W., R. Zhang, M. Wen, B.-J. Kim, and J.-C. Nam, 2015: Interannual variation of the South Asian high and its relation with Indian and East Asian summer monsoon rainfall. J. Climate, 28, 2623–2634, doi:10.1175/JCLI-D-14-00454.1.

    Article  Google Scholar 

  • Wu, R., 2002: A mid-latitude Asian circulation pattern in boreal summer and its connection with the Indian and East Asian summer monsoons. Int. J. Climatol., 22, 1879–1895.

    Article  Google Scholar 

  • Wu, R., 2017: Relationship between India and East Asian summer rainfall variation. Adv. Atmos. Sci., 34, 4–15, doi:10.1007/s00376-016-6216-6.

    Article  Google Scholar 

  • Wu, R., and B. Wang, 2002: A contrast of the East Asian summer monsoon and ENSO relationship between 1962-77 and 1978-93. J. Climate, 15, 3266–3279.

    Article  Google Scholar 

  • Wu, R., Z.-Z. Hu, and B. P. Kirtman, 2003: Evolution of ENSO-related rainfall anomalies in East Asia. J. Climate, 16, 3741–3757.

    Google Scholar 

  • Yanai, M., and G.-X. Wu, 2006: Effects of the Tibetan Plateau. The Asian Monsoon. Wang, B. Ed., Springer, 513–549.

    Chapter  Google Scholar 

  • Yasunari, T., 1979: Cloudiness fluctuations associated with the northern hemisphere summer monsoon. J. Meteor. Soc. Japan, 57, 227–242.

    Article  Google Scholar 

  • Yasunari, T., 1980: A quasi-stationary appearance of the 30-40 day period in the cloudiness fluctuations during the summer monsoon over India. J. Meteorol. Soc. Japan, 58, 225–229 (in Japanese).

    Article  Google Scholar 

  • Yun, K.-S., J.-Y. Lee, and K.-J. Ha, 2014: Recent intensification of the South and East Asian monsoon contrast associated with an increase in the zonal tropical SST gradient. J. Geophys. Res., 119, 8104–8116, doi:10.1002/2014JD021692.

    Google Scholar 

  • Zhang, Q., G. Wu, and Y. F. Qian, 2002: The bimodality of the 100 hPa South Asia High and its relationship to the climate anomaly over East Asia in summer. J. Meteor. Soc. Japan, 80, 733–744, doi:10.2151/jmsj.80.733.

    Article  Google Scholar 

  • Zhou, T., and Coauthors, 2009: Why the Western Pacific subtropical high has extended west-ward since the Late 1970s. J. Climate, 22, 2199–2215, doi:10.1175/2008JCLI2527.1.

    Article  Google Scholar 

  • Zhu, Q., J. He, and P. Wang, 1986: A study of circulation difference between East Asia and the Indian summer monsoon with their interaction. Adv. Atmos. Sci., 3, 466–477, doi:10.1007/BF02657936.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Kripalani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Preethi, B., Mujumdar, M., Prabhu, A. et al. Variability and teleconnections of South and East Asian summer monsoons in present and future projections of CMIP5 climate models. Asia-Pacific J Atmos Sci 53, 305–325 (2017). https://doi.org/10.1007/s13143-017-0034-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-017-0034-3

Key words

Navigation