Skip to main content
Log in

Assessment of future changes in the maximum temperature at selected stations in Iran based on HADCM3 and CGCM3 models

  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Identification and assessment of climate change in the next decades with the aim of appropriate environmental planning in order to adapt and mitigate its effects are quite necessary. In this study, maximum temperature changes of Iran were comparatively examined in two future periods (2041-2070 and 2071-2099) and based on the two general circulation model outputs (CGCM3 and HADCM3) and under existing emission scenarios (A2, A1B, B1 and B2). For this purpose, after examining the ability of statistical downscaling method of SDSM in simulation of the observational period (1981-2010), the daily maximum temperature of future decades was downscaled by considering the uncertainty in seven synoptic stations as representatives of climate in Iran. In uncertainty analysis related to model-scenarios, it was found that CGCM3 model under scenario B1 had the best performance about the simulation of future maximum temperature among all of the examined scenario-models. The findings also showed that the maximum temperature at study stations will be increased between 1°C and 2°C in the middle and the end of 21st century. Also this maximum temperature changes is more severe in the HADCM3 model than the CGCM3 model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chu, J. T., J. Xia, C. Y. Xu, and V. P. Singh, 2010: Statistical downscaling of daily mean temperature, pan evaporation and precipitation for climate change scenarios in Haihe River, China. Theor. Appl. Climatol., 99, 149–161, doi:10.1007/s00704-009-0129-6.

    Article  Google Scholar 

  • Covey, C., K. M. Achuta Rao, U. Cubasch, P. Jones, S. J. Lambert, M. E. Mann, T. J. Phillips, and K. E. Taylor, 2003: An overview of results from the Coupled Model Inter comparison Project. Global. Planet. Change, 37, 103–133.

    Article  Google Scholar 

  • Dracup, J. A., and S. Vicuna, 2005: An overview of hydrology and water resources studies on climate change: the California experience. Proc. World Water Congress, Anchorage, AK, USA, 1–12.

    Google Scholar 

  • El Kenawy, A., J. I. López Moreno, and S. M. Vicente Serrano, 2012: Trend and variability of surface air temperature in northeastern Spain (1920-2006): linkage to atmospheric circulation. Atmos. Res., 106, 159–180, doi:10.1016/j.atmosres.2011.12.006.

    Article  Google Scholar 

  • Elagib, N. A., and A. S. A. Abdu, 2010: Development of temperatures in the Kingdom of Bahrain from 1947 to 2005. Theor. Appl. Climatol., 101, 269–279, doi:10.1007/s00704-009-0205-y.

    Article  Google Scholar 

  • Gagnon, S., B. Singh, J. Rousselle, and L. Roy, 2005: An application of the statistical downscaling model (SDSM) to simulate climatic data for stream flow modeling in Québec. Can. Water Resour. J., 30, 297–314.

    Article  Google Scholar 

  • Gu, H., G. Wang, Z. Yu, and R. Mei, 2012: Assessing future climate changes and extreme indicators in east and south Asia using the RegCM4 regional climate model. Climatic Change, 114, 301–317, doi: 10.1007/s10584-012-0411-y.

    Article  Google Scholar 

  • Hashemi-Ana, S. K., M. Khosravi, and T. Tavousi, 2015: Validation of AOGCMs Capabilities for Simulation Length of Dry Spells under the Climate Change in Southwestern Area of Iran. Open J. Air Pollut., 4, 76–85, doi:10.4236/ojap.2015.42008.

    Article  Google Scholar 

  • Horton, B., 1995: Geographical distribution of changes in maximum and minimum temperatures. Atmos. Res., 37, 101–117.

    Article  Google Scholar 

  • Huang, J., J. Zhang, Z. Zhang, C. Xu, B. Wang, and J. Yao, 2011: Estimation of future precipitation change in the Yangtze River basin by using statistical downscaling method. Stoch. Env. Res. Risk A., 25, 781–792, doi:10.1007/s00477-010-0441-9.

    Article  Google Scholar 

  • IPCC, 2007: Climate Change: the physical science basis. Contribution of Working Group I to the Fourth Assessment, Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 331 pp.

  • Huang, J., 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment, Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 1550 pp.

    Google Scholar 

  • IRIMO, 2012: Summary reports of Iran’s extreme climatic events. Ministry of roads and urban development, Iran Meteorological Organization. [Available online at www.cri.ac.ir].

  • Islam, S., N. Rehman, and M. M. Sheikh, 2009: Future change in the frequency of warm and cold spells over Pakistan simulated by the PRECIS regional climate model. Climatic Change, 94, 35–45.

    Article  Google Scholar 

  • Jones, P. D., 1994: Hemispheric surface air temperature variations: a reanalysis and an update to 1993. J. Climate, 7, 1794–1802.

    Article  Google Scholar 

  • Jones, P. D., and A. Moberg, 2003: Hemispheric and large-scale surface air temperature variations: An extensive revision and an update to 2001. J. Climate, 16, 206–223.

    Article  Google Scholar 

  • Kadiolu, M., Z. en, and L. Gültekin, 2001: Variations and trends in Turkish seasonal heating and cooling degree-days. Climatic Change, 49, 209–223.

    Article  Google Scholar 

  • Kumar, K. R., and L. S. Hingane, 1988: Long-term variations of surface air temperature at major industrial cities of India. Climatic Change, 13, 287–307.

    Article  Google Scholar 

  • Mahmood, R., and M. S. Babel, 2013: Evaluation of SDSM developed by annual and monthly sub-models for downscaling temperature and precipitation in the Jhelum basin, Pakistan and India. Theor. Appl. Climatol., 113, 27–44, doi:10.1007/s00704-012-0765-0.

    Article  Google Scholar 

  • Mahmood, R., and M. S. Babel, 2014: Future changes in extreme temperature events using the statistical downscaling model (SDSM) in the trans-boundary region of the Jhelum river basin. Wea. Clim. Extremes, 5, 56–66, doi: 10.1016/j.wace.2014.09.001.

    Article  Google Scholar 

  • Rahmstorf, S., and A. Ganopolski, 1999: Long-term global warming scenarios computed with an efficient coupled climate model. Climatic Change, 43, 353–367.

    Article  Google Scholar 

  • Revadekar, J. V., D. R. Kothawale, S. K. Patwardhan, G. B. Pant, and K. R. Kumar, 2012: About the observed and future changes in temperature extremes over India. Nat. hazards, 60, 1133–1155, doi:10.1007/s11069-011-9895-4.

    Article  Google Scholar 

  • Salon, S., G. Cossarini, S. Libralato, X. Gao, C. Solidoro, and F. Giorgi, 2008: Downscaling experiment for the Venice lagoon. I. Validation of the present-day precipitation climatology. Climate Res, 38, 31–41.

    Google Scholar 

  • Semenov, M. A., and P. Stratonovitch, 2010: Use of multi-model ensembles from global climate models for assessment of climate change impacts. Climate Res., 41, 1–12, doi:10.3354/cr00836.

    Article  Google Scholar 

  • Seo, Y. W., H. Kim, K. S. Yun, J. Y. Lee, K. J. Ha, and J. Y. Moon, 2014: Future change of extreme temperature climate indices over East Asia with uncertainties estimation in the CMIP5. Asia-Pac. J. Atmos. Sci., 50, 609–624, doi:10.1007/s13143-014-0050-5.

    Article  Google Scholar 

  • Sonali, P., and D. N. Kumar, 2013: Review of trend detection methods and their application to detect temperature changes in India. J. Hydrol., 476, 212–227, doi:10.1016/j.jhydrol.2012.10.034.

    Article  Google Scholar 

  • Stern, D. I., and R. K. Kaufmann, 2000: Detecting a global warming signal in hemispheric temperature series: A structural time series analysis. Climatic Change, 47, 411–438.

    Article  Google Scholar 

  • Toros, H., 2012: Spatial-temporal variation of daily extreme temperatures over Turkey. Int. J. Climatol., 32, 1047–1055, doi:10.1002/joc.2325.

    Article  Google Scholar 

  • Wang, X., T. Yang, Q. Shao, K. Acharya, W. Wang, and Z. Yu, 2012: Statistical downscaling of extremes of precipitation and temperature and construction of their future scenarios in an elevated and cold zone. Stoch. Env. Res. Risk A., 26, 405–418, doi:10.1007/s00477-011-0535-z.

    Article  Google Scholar 

  • Whan, K., 2014: Trends and variability of temperature extremes in the tropical Western Pacific. Int. J. Climatol., 34, 2585–2603, doi:10.1002/joc.3861.

    Article  Google Scholar 

  • Wilby, R. L., C. W. Dawson, 2007: SDSM 4.2-A decision support tool for the assessment of regional climate change impacts. Loughborough University Press, 94 pp.

    Google Scholar 

  • Wilby, R. L., C. W. Dawson, 2013: The statistical downscaling model: insights from one decade of application. Int. J. Climatol., 33, 1707–1719, doi: 10.1002/joc.3544.

    Article  Google Scholar 

  • Wilby, R. L., C. W. Dawson, and E. M. Barrow, 2002: SDSM-A decision support tool for the assessment of regional climate change impacts. Environ. Model. Software, 17, 145–157.

    Article  Google Scholar 

  • Yue, S., and M. Hashino, 2003: Temperature trends in Japan: 1900-1996. Theor. Appl. Climatol., 75, 15–27.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Abbasnia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasnia, M., Tavousi, T. & Khosravi, M. Assessment of future changes in the maximum temperature at selected stations in Iran based on HADCM3 and CGCM3 models. Asia-Pacific J Atmos Sci 52, 371–377 (2016). https://doi.org/10.1007/s13143-016-0006-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-016-0006-z

Keywords

Navigation