Skip to main content
Log in

Climate change projections over India by a downscaling approach using PRECIS

  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

An Erratum to this article was published on 01 November 2016

Abstract

This study presents a comprehensive assessment of the possible regional climate change over India by using Providing REgional Climates for Impacts Studies (PRECIS), a regional climate model (RCM) developed by Met Office Hadley Centre in the United Kingdom. The lateral boundary data for the simulations were taken from a sub-set of six members sampled from the Hadley Centre’s 17- member Quantified Uncertainty in Model Projections (QUMP) perturbed physics ensemble. The model was run with 25 km × 25 km resolution from the global climate model (GCM) - HadCM3Q at the emission rate of special report on emission scenarios (SRES) A1B scenarios. Based on the model performance, six member ensembles running over a period of 1970-2100 in each experiment were utilized to predict possible range of variations in the future projections for the periods 2020s (2005-2035), 2050s (2035-2065) and 2080s (2065-2095) with respect to the baseline period (1975-2005). The analyses concentrated on maximum temperature, minimum temperature and rainfall over the region. For the whole India, the projections of maximum temperature from all the six models showed an increase within the range 2.5°C to 4.4°C by end of the century with respect to the present day climate simulations. The annual rainfall projections from all the six models indicated a general increase in rainfall being within the range 15-24%. Mann-Kendall trend test was run on time series data of temperatures and rainfall for the whole India and the results from some of the ensemble members indicated significant increasing trends. Such high resolution climate change information may be useful for the researchers to study the future impacts of climate change in terms of extreme events like floods and droughts and formulate various adaptation strategies for the society to cope with future climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Annamalai, H., K. Hamilton, and K. R. Sperber, 2007: The South Asian Summer Monsoon and Its Relationship with ENSO in the IPCC AR4 Simulations. J. Climate, 20, 1071–1092, doi:http://dx.doi.org/10.1175/JCLI4035.1.

    Article  Google Scholar 

  • Arakawa, A., and V. R. Lamb, 1977: Computational design of the basic dynamical processes of the UCLA general circulation model. Methods in Computational Physics, 17, J. Chang, Ed., Academic Press, 173–265.

    Google Scholar 

  • Bhaskaran, B., R. G. Jones, J. M. Murphy, and M. Noguer, 1996: Simulations of the Indian summer monsoon using a nested regional climate model: domain size experiments. Clim. Dynam., 12, 573–587.

    Article  Google Scholar 

  • Bhaskaran, B., A. Ramachandran, R. Jones, and W. Moufouma-Okia, 2012: Regional climate model applications on sub-regional scales over the Indian monsoon region: The role of domain size on downscaling uncertainty. J. Geophys. Res., 117, D10113, doi:10.1029/2012JD017956.

    Google Scholar 

  • Caesar, J., T. Janes, A. Lindsay, and B. Bhaskaran, 2015: Temperature and precipitation projections over Bangladesh and the upstream Ganges, Brahmaputra and Meghna systems. Environ. Sci. Proc. Impacts, 17, 1047–1056, doi:10.1039/C4EM00650J.

    Article  Google Scholar 

  • Cherchi, A., A. Alessandri, S. Masina, and A. Navarra, 2011: Effects of increased CO2 levels on monsoon. Clim. Dynam., 37, 83–101, doi: 10.1007/s00382-010-0801-7.

    Article  Google Scholar 

  • Climate Profile of India Report, 2010: Met Monograph No. Environment Meteorology-01/2010. [Available online at http://www.imd.gov.in/section/climate/StateLevelClimateChangeMonoFinal.pdf].

  • Cullen, M. J. P., 1993: The unifed forecast/climate model. Meteorol. Mag., 122, 81–94.

    Google Scholar 

  • Dash, S. K., M. S. Shekhar, and G. P. Singh, 2006: Simulation of Indian Summer monsoon circulation and rainfall using RegCM3. Theor. Appl. Climatol., 86, 161–172, doi:10.1007/s00704-006-0204-1.

    Article  Google Scholar 

  • Davies, H. C., and R. E Turner, 1977: Updating prediction models by dynamical relaxation: an examination of the technique. Quart. J. Roy. Meteor. Soc., 103, 225–245.

    Article  Google Scholar 

  • Dimri, A. P., T. Yasunari, A. Wiltshire, P. Kumar, C. Mathison, J. Ridley, and D. Jacob, 2013: Application of regional climate models to the Indian winter monsoon over the western Himalayas. Sci. Total Environ., 468, S36–S47, doi:10.1016/j.scitotenv.2013.01.040.

    Article  Google Scholar 

  • Dobler, A., and B. Ahrens, 2010: Analysis of the Indian summer monsoon system in the regional climate model COSMO-CLM. J. Geophys. Res., 115, D16101, doi:10.1029/2009JD013497.

    Article  Google Scholar 

  • Dobler, A., and B. Ahrens, 2011: Four climate change scenarios for the Indian summer monsoon by the regional climate model COSMO-CLM. J. Geophys. Res., 116, D24104, doi:10.1029/2011JD016329.

    Article  Google Scholar 

  • Douville, H., 2005: Limitations of time-slice experiments for predicting regional climate change over South Asia. Clim. Dynam., 24, 373–391, doi:10.1007/s00382-004-0509-7.

    Article  Google Scholar 

  • Edwards, J., and A. Slingo, 1996: Studies with a flexible new radiation code I: choosing a configuration for a large-scale model. Quart. J. Roy. Meteor. Soc., 122, 689–720.

    Article  Google Scholar 

  • Ehret, U., E. Zehe, V. Wulfmeyer, K. Warrach-Sagi, and J. M. Liebert, 2012: HESS Opinions “Should we apply bias correction to global and regional climate model data?” Hydrol. Earth Syst. Sci., 16, 3391–3404, doi:10.5194/hessd-9-5355-2012.

    Article  Google Scholar 

  • Gadgil, S., and S. Sajini, 1998: Monsoon precipitation in the AMIP runs. Clim. Dynam., 14, 659–689.

    Article  Google Scholar 

  • Geethalakshmi, V., A. Lakshmanan, D. Rajalakshmi, R. Jagannathan, S. Gummidi, A. P. Ramaraj, K. G. Bhuvaneswari, and R. Anbhazhagan, 2011: Climate change impact assessment and adaptation strategies to sustain rice production in Cauvery basin of Tamil Nadu. Curr. Sci., 101, 3–10.

    Google Scholar 

  • Gilbert, R. O., 1987: Statistical methods for environmental pollution monitoring. Van Nostrand Reinhold Co., 320 pp.

    Google Scholar 

  • Giorgi, F., and X. Bi, 2000: A study of internal variability of a regional climate model. J. Geophys. Res., 105, 29503–29521, doi:10.1029/2000JD900269.

    Article  Google Scholar 

  • Giorgi, F., and L. O. Mearns, 2002: Calculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the reliability ensemble averaging (REA) method. J. Climate, 15, 1141–1158, doi:http://dx.doi.org/10.1175/1520-0442(2002) 015<1141:COAURA>2.0.CO;2.

    Article  Google Scholar 

  • Goswami, B. N., V. Venugopal, D. Sengupta, M. S. Madhusoodanan, and P. K. Xavier, 2006: Increasing trend of extreme rain events over India in a warming environment. Science, 314, 1442–1445, doi:10.1126/science.1132027.

    Article  Google Scholar 

  • Hawkins, E., T. M. Osborne, C. K. Ho, and A. J. Challinor, 2012: Calibration and bias correction of climate projections for crop modelling: an idealised case study over Europe. Agric. forest Meteor., 170, 19–31, doi:10.1016/j.agrformet.2012.04.007.

    Article  Google Scholar 

  • Hingane, L. S., K. Rupa Kumar, and B. V. Ramana Murthy, 1985: Longterm trends of surface air temperature in India. J. Climatol., 5, 521–528, doi:10.1002/joc.3370050505.

    Article  Google Scholar 

  • Ho, C. K., D. B. Stephenson, M. Collins, C. A. T. Ferro, and S. J. Brown, 2012: Calibration strategies: a source of additional uncertainty in climate change projections. Bull. Amer. Meteor. Soc., 93, 21–26, doi: http://dx.doi.org/10.1175/2011BAMS3110.1.

    Article  Google Scholar 

  • Hong, S.-Y., and M. Kanamitsu, 2014: Dynamical Downscaling: Fundamental Issues from an NWP Point of View and Recommendations. Asia-Pac. J. Atmos. Sci., 50, 83–104, doi:10.1007/s13143-014-0029-2.

    Article  Google Scholar 

  • IPCC, 2007: Climate Change 2007, The physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 996 pp.

  • Islam, M. N., M. Rafiuddin, A. U. Ahmed, and R. K. Kolli, 2007: Calibration of PRECIS in employing future scenarios in Bangladesh. Int. J. Climatol, 28, 617–628, doi:10.1002/joc.1559.

    Article  Google Scholar 

  • Jacob, D., 2007: An inter-comparison of regional climate models for Europe: design of the experiments and model performance. Climatic Change, 81, 31–52, doi:10.1007/s10584-006-9213-4.

    Article  Google Scholar 

  • Jones, R., M. Noguer, D. Hassell, D. Hudson, S. Wilson, G. Jenkins, and J. Mitchell, 2004: Generating high resolution climate change scenarios using PRECIS. [Available online at http://www.metoffice.gov.uk/media/pdf/6/5/PRECIS_Handbook.pdf].

    Google Scholar 

  • Jones, R., A. Hartley, C. McSweeney, C. Mathison, and C. Buontempo, 2012: Deriving high resolution climate data for West Africa for the period 1950-2100. UNEP-WCMC Technical Report, 25 pp.

    Google Scholar 

  • Julien, C., M. Clemence, P. Benjamin, and R. Yves, 2011: Quantifying internal variability in a regional climate model: a case study for Southern Africa. Clim. Dynam., 37, 1335–1356, doi:10.1007/s00382-011-1021-5.

    Article  Google Scholar 

  • Kang, I. S., K. Jin, B. Wang, K. M. Lau, J. Shukla, and V. Krishnamurthy, 2002: Intercomparison of the climatological variations of Asian summer monsoon precipitation simulated by 10 GCMs. Clim. Dynam., 19, 383–395, doi:10.1007/s00382-002-0245-9.

    Article  Google Scholar 

  • Kershaw, R., and D. Gregory, 1997: Parametrization of momentum transport by convection. Part I. Theory and cloud modelling results. Quart. J. Roy. Meteor. Soc., 123, 1133–1151.

    Article  Google Scholar 

  • Kotroni, V., S. Lykoudis, K. Lagouvardos, and D. Lalas, 2008: A fine resolution regional climate change experiment for the Eastern Mediterranean: Analysis of the present climate simulations. Glob. Planet. Chang., 64, 93–104, doi:10.1016/j.gloplacha.2008.10.003.

    Article  Google Scholar 

  • Krishna Kumar, K., K. Kamala, B. Rajagoopalan, M. P. Hoerling, J. K. Eischeid, S. K. Patwardhan, G. Srinivasan, B. N. Goswami, and R. Nemani, 2010: The once and future pulse of Indian monsoonal climate. Clim. Dynam., 36, 2159–2170, doi:10.1007/s00382-010-0974-0.

    Article  Google Scholar 

  • Krishna Kumar, K., S. K. Patwardhan, A. Kulkarni, K. Kamala, R. K. Koteswara, and R. Jones, 2011: Simulated projections for summer monsoon climate over India by a high-resolution regional climate model (PRECIS). Curr. Sci., 101, 3–10.

    Google Scholar 

  • Kripalani, R. H., J. H. Oh, A. Kulkarni, S. S. Sabade, and H. S. Chaudhari, 2007: South Asian summer monsoon precipitation variability: Coupled climate model simulations and Projections under IPCC AR4. Theor. Appl. Climatol., 90, 133–159, doi:10.1007/s00704-006-0282-0.

    Article  Google Scholar 

  • Kulkarni, A., S. Patwardhan, K. Krishna Kumar, K. Ashok, and R. Krishnan, 2013: Projected climate change in the Hindu Kush-Himalayan region by using the high-resolution regional climate model PRECIS. Mt. Res. Dev., 33, 142–151, doi:http://dx.doi.org/10.1659/MRD-JOURNAL-D-11-00131.1.

    Google Scholar 

  • Kumar, P., 2013: Downscaled climate change projections with uncertainty assessment over India using a high resolution multimodel approach. Sci. Total Environ., 468, S18–S30, doi:10.1016/j.scitotenv.2013.01.051.

    Article  Google Scholar 

  • Lal, M., T. Z. Nozawa, S. Emori, H. Harasawa, K. Takahashi, M. Kimoto, A. Abe-Ouchi, T. Nakajima, T. Takemura, A. Numaguti, 2001: Future climate change: implication for Indian summer monsoon and its variability. Curr. Sci., 81, 1196–1207

    Google Scholar 

  • Maraun, D., 2012: Nonstationarities of regional climate model biases in European seasonal mean temperature and precipitation sums. Geophys. Res. Lett., 39, L06706, doi:10.1029/2012GL051210.

    Article  Google Scholar 

  • Marengo, J. A., R. Jones, L. M. Alves, and M. C. Valverde, 2009: Future change of temperature and precipitation extremes in South America as derived from the PRECIS regional climate modeling system. Int. J. Climatol., 29, 2241–2255, doi:10.1002/joc.1863.

    Article  Google Scholar 

  • May, W., 2004: Variability and extremes of daily rainfall during the Indian summer monsoon in the period 1901-1989. Glob. Planet. Chang., 44, 83–105, doi:10.1016/j.gloplacha.2004.06.007.

    Article  Google Scholar 

  • May, W., 2011: The sensitivity of the Indian summer monsoon to a global warming of 2°C with respect to pre-industrial times. Clim. Dynam., 37, 1843–1868, doi:10.1007/s00382-010-0942-8.

    Article  Google Scholar 

  • McGregor, J. L., 1997: Regional climate modeling. Meteor. Atmos. Phys., 63, 105–117.

    Article  Google Scholar 

  • May, W., 2013: Recent developments in variable-resolution global climate modelling. Climatic Change, 119, doi:10.1007/s10584-013-0866-5.

  • McSweeney, C. F., and G. J. Richard, 2010: Selecting members of the ‘QUMP’ perturbed-physics ensemble for use with PRECIS. Met office Hadley Centre. [Available online at http://www.metoffice.gov.uk/media/pdf/e/3/SelectingCGMsToDownscale.pdf].

    Google Scholar 

  • May, W., G. J. Richard, and B. B. B. Ben, 2012: Selecting Ensemble Members to Provide Regional Climate Change Information. J. Climate, 25, 7100–7121, doi:http://dx.doi.org/10.1175/JCLI-D-11-00526.1.

    Article  Google Scholar 

  • Meehl, G. A., 2007: Global Climate Projections. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 747–845.

    Google Scholar 

  • Mesinger, F., 1981: Horizontal Advection Schemes of a Staggered Grid -An Enstrophy and Energy-Conserving Model. Mon. Wea. Rev., 109, 467–478, doi:http://dx.doi.org/10.1175/1520-0493(1981)109<0467:HASOAS> 2.0.CO;2.

    Article  Google Scholar 

  • Met Office Report, 2012: Climate Change in Maharashtra. [Available online at http://www.metoffice.gov.uk/media/pdf/c/a/GOM_brochure_for_web.pdf].

  • Mohammad, A. R., and R. M. Mujibur, 2012: A Comprehensive Modeling Study on Regional Climate Model (RCM) Application-Regional Warming Projections in Monthly Resolutions under IPCC A1B Scenario. Atmosphere, 3, 557–572, doi:10.3390/atmos3040557.

    Article  Google Scholar 

  • Mukhopadhyay, P., S. Taraphdar, B. N. Goswami, and K. Krishna Kumar, 2010: Indian summer monsoon precipitation climatology in a high resolution regional climate model: Impact of convective parameterization on systematic biases. Wea. Forecasting, 25, 369–387, doi: http://dx.doi.org/10.1175/2009WAF2222320.1.

    Article  Google Scholar 

  • Murphy, J. M., 2009: UK Climate Projections Science Report: Climate change projections. Met Office Hadley Centre. [Available online at http://ukclimateprojections.metoffice.gov.uk/media. jsp?mediaid=87893].

    Google Scholar 

  • Nakienovi, N., 2000: Special report on emissions scenarios. Cambridge University Press, 612 pp.

    Google Scholar 

  • Nazrul Islam, Md., 2009: Rainfall and Temperature Scenario for Bangladesh. Open Atmos. Sci. J., 3, 93–103.

    Article  Google Scholar 

  • Önöz, B., and M. Bayazit, 2012: The Power of Statistical Tests for Trend Detection. Turkish J. Eng. Environ. Sci., 27, 247–251.

    Google Scholar 

  • Pant, G. B., and K. Rupa Kumar, 1997: Climates of South Asia. John Wiley & Sons, 344 pp.

    Google Scholar 

  • Parthasarathy, B., A. A. Munot, and D. R. Kothawale, 1994: All India monthly and seasonal rainfall series 1871-1993. Theor. Appl. Climatol., 49, 217–224.

    Article  Google Scholar 

  • Prasanta Kumar Bal, A. Ramachandran, R. Geetha, B. Bhaskaran, P. Thirumurugan, J. Indumathi, and N. Jayanthi, 2016: Climate Change Projections for Tamil Nadu: Deriving High Resolution Climate Data by a Downscaling Approach Using PRECIS. Theor. Appl. Climatol., 123, 523–535, doi:10.1007/s00704-014-1367-9.

    Article  Google Scholar 

  • Rajbhandari, R., A. B. Shrestha, A. Kulkarni, S. K. Patwardhan, and S. R. Bajracharya, 2014: Projected changes in climate over the Indus river basin using a high resolution regional climate model (PRECIS). Clim. Dynam., 44, 339–357, doi:10.1007/s00382-014-2183-8.

    Article  Google Scholar 

  • Rajeevan, M., and J. Bhate, 2008: A high resolution daily gridded rainfall data set (1971-2005) for mesoscale meteorological studies. NCC Research Report, No 9, India Meteorological Department, 14 pp.

    Google Scholar 

  • Rajeevan, M., and R. S. Nanjundiah, 2009: Coupled model simulations of twentieth century climate of the Indian summer monsoon. Current trends in science: platinum jubilee special, N. Mukunda, Ed., Indian Academy of Sciences, 537–568.

    Google Scholar 

  • Revadekar, J. V., D. R. Kothawale, S. K. Patwardhan, G. B. Pant, and K. Rupa Kumar, 2012: About the observed and future changes in temperature extremes over India. Nat. Hazards, 60, 1133–1155.

    Article  Google Scholar 

  • Reichler, T., and J. Kim, 2008: How well do coupled models simulate today's climate? Bull. Amer. Meteor. Soc., 89, 303–311, doi:http://dx.doi.org/10.1175/BAMS-89-3-303.

    Article  Google Scholar 

  • Rupa Kumar, K., and R. G. Ashrit, 2001: Regional aspects of global climatic change simulation: validation and assessment of climate response over Indian monsoon region to transient increase of greenhouse gases and sulphate aerosols. Mausam, 52, 229–244.

    Google Scholar 

  • Rupa Kumar, K., A. K. Sahai, K. K. Kumar, S. K. Patwardhan, P. K. Mishra, J. V. Revadekar, K. Kamala, and G. B. Pant, 2006: High resolution climate changes scenarios for India for the 21st century. Curr. Sci., 90, 334–345.

    Google Scholar 

  • Simmons, A., S. Uppala, D. Dee, and S. Kobayashi, 2007: ERA-Interim: new ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, 110, 25–35.

    Google Scholar 

  • Sperber, K. R., and T. N. Palmer, 1996: Interannual Tropical Rainfall Variability in General Circulation Model simulations associated with the atmospheric model intercomparison project. J. Climate, 9, 2727–2750, doi:http://dx.doi.org/10.1175/1520-0442(1996)009<2727:ITRVIG> 2.0.CO;2.

    Article  Google Scholar 

  • Srivastava, A. K., M. Rajeevan, and S. R. Kshirsagar, 2008: Development of a high resolution daily gridded temperature data set (1969-2005) for the Indian region. Atmos. Sci. Lett., 10, 249–254.

    Google Scholar 

  • Teutschbein, C., and J. Seibert, 2013: Is bias correction of regional climate model (RCM) simulations possible for non-stationary conditions? Hydrol. Earth Syst. Sci., 17, 5061–5077, doi:10.5194/hess-17-5061-2013.

    Article  Google Scholar 

  • Turner, A. G., 2011: Modeling monsoons: Understanding and predicting current and future behavior. The Global Monsoon System: Research and Forecast. 2nd ed., C.-P. Chang et al. Eds., World Scientific, 421–454.

    Chapter  Google Scholar 

  • Turner, A. G., and H. Annamalai, 2012: Climate change and the South Asian summer monsoon. Nat. Climatic Change, 2, 587–595, doi:10.1038/nclimate1495.

    Article  Google Scholar 

  • Uppala, S. M., 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 2961–3012, doi:10.1256/qj.04.176.

    Article  Google Scholar 

  • Wang, B., I. S. Kang, and Y. J. Lee, 2004a: Ensemble simulations of Asian-Australian monsoon variability during 1997/1998 El Nino by 11 AGCMs. J. Climate, 17, 803–818, doi:10.1029/2005GL022734.

    Article  Google Scholar 

  • Wang, B., Q. Ding, X. Fu, I. S. Kang, K. Jin, J. Shukla, and F. Doblas-Reyes, 2005: Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys. Res. Lett., 32, L15711, doi:10.1029/2005GL022734.

    Article  Google Scholar 

  • Wang, Y., L. R. Leung, J. L. McGregor, D.-K. Lee, W.-C. Wang, Y.-H. Ding, and F. Kimura, 2004b: Regional climate modeling: Progress, challenges, and prospects. J. Meteor. Soc. Japan, 82, 1599–1628, doi:http://doi.org/10.2151/jmsj.82.1599.

    Article  Google Scholar 

  • Zhang, Y., Y. L. Xu, W. J. Dong, L. J. Cao, and M. Sparrow, 2006: A future climate scenario of regional changes in extreme climate events over China using the PRECIS climate model. Geophys. Res. Lett., 33, L24702, doi:10.1029/2006GL027229.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasanta Kumar Bal.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s13143-016-0044-6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bal, P.K., Ramachandran, A., Palanivelu, K. et al. Climate change projections over India by a downscaling approach using PRECIS. Asia-Pacific J Atmos Sci 52, 353–369 (2016). https://doi.org/10.1007/s13143-016-0004-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-016-0004-1

Keywords

Navigation