Skip to main content
Log in

Simulation of impact from stratospheric ozone on global tropospheric ozone distribution with a chemistry transport model: A case study during the 1990–1991 period

  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

In this work we examine the effect of ozone (O3) from the stratosphere on the O3 levels in the troposphere. The tropopause is defined according to the potential vorticity (PV) and potential temperature distribution. Annual simulations were performed with and without stratospheric O3 in the model to access the impact of stratospheric O3 on tropospheric O3 distribution. Our results show that surface O3 over the tropical marine boundary layer is dominated by in-situ photochemistry in the troposphere. The maintenance of the inter-hemispheric asymmetry in ozone over the extra-tropical marine boundary layer is dominated by the transport of O3 from the stratosphere. Comparisons between the model and the surface measurements show that the model without stratospheric O3 exhibits a hemispheric summer maximum, emphasizing the contributions of transport of O3 and O3 producing precursors from continental regions during the summer months, whilst no clear spring O3 maximum is found. About 50%–80% of O3 in the lower troposphere over the northern hemisphere mid-latitudes are photochemically produced during the northern hemisphere summer. About 20%–40% is due to tropospheric photochemistry in the lower troposphere during the northern hemisphere spring. We conclude that O3 transported from the stratosphere is the dominating factor for the spring O3 maximum over the extra-tropical latitudes, while the photochemical ozone production is the dominating factor for O3 over the tropical marine boundary layer environments and over the land surface emission areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baldy, S., G. Ancellet, M. Bessafi, A. Badr, and D. Lan Sun Luk, 1996: Field observations of the vertical distribution of tropospheric ozone at the island of Reunion (southern tropics). J. Geophys. Res., 101, No. D19, 23,835–23,849.

    Google Scholar 

  • Berntsen, T. K., and I. S. A. Isaksen, 1997: A global three-dimensional chemical transport model for the troposphere. 1. Model description and CO and ozone results. J. Geophys. Res., 102, No. D17, 21239-21280.

    Google Scholar 

  • Bethan, S., G. Vaughan, S. J. Reid, 1996: A comparison of ozone and thermal tropopause heights and the impact of tropopause definition on quantifying the ozone content of the troposphere. Quart. J. Roy. Meteor. Soc., 122, 929–944.

    Article  Google Scholar 

  • Browell, E. V., and Coauthors, 1996: Ozone and aerosol distributions and air mass characteristics over the South Atlantic Basin during the burning season. J. Geophys. Res., 101, 24,043–24,068.

    Google Scholar 

  • Crawford, J., and Coauthors, 1997: As assessment of ozone photochemistry in the extratropical western North Pacific: Impact of continental outflow during the late winter/early spring. J. Geophys. Res., 102, No. D23, 28,469–28,487.

    Google Scholar 

  • Diab, R. D., and Coauthors, 1996: Vertical ozone distribution over southern Africa and adjacent oceans during SAFARI-92. J. Geophys. Res., 101, No. D19, 23,823–23,833.

    Google Scholar 

  • Elbern, H., J. Hendricks, and A. Ebel, 1998: A climatology of tropopause folds by global analyses. Theor. Appl. Climatol., 59, 181–200.

    Article  Google Scholar 

  • Fishman, J., P. Minnis, H. G. Reichle Jr., 1986: The use of satellite data to study tropospheric ozone in the tropics. J. Geophys. Res., 91, 14,451–14,465.

    Google Scholar 

  • —, K. Fakhruzzaman, B. Cros, and D. Nganga, 1991: Identification of widespread pollution in the Southern Hemisphere deduced from satellite analyses. Science, 252, 1693–1696.

    Article  Google Scholar 

  • Hack, J. J., B. A. Boville, B. P. Briegleb, J. T. Kiehl, P. J. Rasch, D. L. Williamson, 1993: Description of the NCAR Community Climate Model (CCM2). NCAR Technical Note, NCAR/TN-382+STR, National Center for Atmospheric Research, Boulder, Colorado.

    Google Scholar 

  • Hess, P. G., and R. Zbinden, 2013: Stratospheric impact on tropospheric ozone variability and trends: 1990-2009. Atmos. Chem. Phys., 13, 649–674.

    Article  Google Scholar 

  • Holton, J. R., P. H. Haynes, M. E. McIntyre, A. R. Douglass, R. B. Rood, and L. Pfister, 1995: Stratosphere-troposphere exchange. Rev. Geophys., 33, 403–439.

    Article  Google Scholar 

  • Hoskins, B. J., 1991: Towards a PV-θ view of the general circulation. Tellus, 43AB, 27–35.

    Google Scholar 

  • Hsu, J., and M. J. Prather, 2009: Stratospheric variability and tropospheric ozone. J. Geophys. Res., 114, D06102, doi:10.1029/2008JD010942.

    Google Scholar 

  • Jacob, D. J., and Coauthors, 1996: Origin of ozone and NOx in the tropical troposphere: A photochemical analysis of aircraft observations over the South Atlantic basic. J. Geophys. Res., 101, 24,235-24,250.

    Google Scholar 

  • Jaffe, D., A. Mahura, J. Kelly, J. Atkins, P. C. Novelli, and J. Merrill, 1997: Impact of Asian emissions on the remote North Pacific atmosphere: Interpretation of CO data from Shemya, Guam, Midway and Mauna Loa. J. Geophys. Res., 102, 28,627-28,635.

    Google Scholar 

  • Kajii, Y., H. Akimoto, Y. Komazaki, S. Tanaka, H. Mukai, K. Murano, and J. T. Merrill, 1997: Long-range transport of ozone, carbon monoxide, and acidic trace gases at Oki Island, Japan, during PEM-West B /PEACAMPOT B campaign. J. Geophys. Res., 102, 28,637-28,649.

    Google Scholar 

  • Künzli, N., and Coauthors, 2000: Public-health impact of outdoor and traffic-related air polution: a European assessment. Lancet, 356, 795–801.

    Article  Google Scholar 

  • Lelieveld, J., and F. J. Dentener, 2000: What controls tropospheric ozone?. J. Geophys. Res., 105, No. D3, 3531–3551.

    Article  Google Scholar 

  • Logan, J. A., 1999a: An analysis of ozonesonde data for the troposphere: Recommendations for testing 3-D models and development of a gridded climatology for tropospheric ozone. J. Geophys. Res., 104, No. D13, 16,115–16,149.

    Google Scholar 

  • —, 1999b. An analysis of ozonesonde data for the lower stratosphere: Recommendations for testing models. J. Geophys. Res., 104, No. D13, 16,151–16,170.

    Google Scholar 

  • Monks, P. S., 2000: A review of the observations and origins of the spring ozone maximum. Atmos. Environ., 34, 3545–3561.

    Article  Google Scholar 

  • Moody, J. L., S. L. Oltmans, H. Levy II, and J. T. Merrill, 1995: Transport climatology of tropospheric ozone: Bermuda, 1988-1991. J. Geophys. Res., 100, 7179–7194.

    Article  Google Scholar 

  • Neu, J. L., T. Flury, G. L. Manny, M. L. Santee, N. J. Livesey, and J. Worden, 2014. Tropospheric ozone variations governed by changes in stratospheric circulation. Nat. Geosci., 7, 340–344.

    Article  Google Scholar 

  • Oltmans, S. J., and Coauthors, 1996: Summer and spring ozone profiles over the Atlantic from ozonesonde measurements. J. Geophys. Res., 101, 29,179-29,200.

    Google Scholar 

  • Perry, K. D., T. A. Cahill, R. C. Schnell, and J. M. Harris, 1999: Longrange transport of anthropogenic aerosols to the National Oceanic and Atmospheric Administration baseline station at Mauna Loa Observatory, Hawaii. J. Geophys. Res., 104, No. D15, 18,521–18,533.

    Google Scholar 

  • Roelofs, G.-J., and J. Lelieveld, 1997: Model study of the influence of cross-tropopause O3 transport on the tropospheric O3 levels. Tellus, 49B, 38–55.

    Article  Google Scholar 

  • —, —, and R. van Dorland, 1997: A three-dimensional chemistry/general circulation model simulation of anthropogenically derived ozone in the troposphere and its radiative climate forcing. J. Geophys. Res., 102, No. D19, 23,389–23,401.

    Google Scholar 

  • Rokjin J. Park, and Sang-Woo Kim, 2014: Air Quality Modeling in East Asia: Present Issues and Future Directions. Asia-Pac. J. Atmos. Sci., 50, 105–120.

    Article  Google Scholar 

  • Schauffler, S. M., and J. S. Daniel, 1994: On the effects of stratospheric circulation changes on trace gas trends. J. Geophys. Res., 99, No. D12, 25,747–25,754.

    Google Scholar 

  • Schultz, M. G., and Coauthors, 1999: On the origin of tropospheric ozone and NOx over the tropical South Pacific. J. Geophys. Res., 104, 5829–5843.

    Article  Google Scholar 

  • Thompson, A. M., K. E. Pickering, D. P. McNamara, M. R. Schoeberl, R. D. Hudson, J. H. Kim, E. V. Browell, V. W. J. H. Kirchhoff, and D. Nganga, 1996: Where did tropospheric ozone over southern Africa and the tropical Atlantic come from in October 1992? Insights from TOMS, GTE TRACE A, and SAFARI 1992. J. Geophys. Res., 101, 24,251-24,278.

    Google Scholar 

  • Tourre, Y. M., and W. B. White, 2005: Evolution of the ENSO signal over the tropical Pacific-Atlantic domain. Geophys. Res. Lett., 32, L07605, doi:10.1029/2004GL022128.

    Google Scholar 

  • Vaughan, G., J. D. Price, and A. Howells, 1994: Transport into the troposphere in a tropopause fold. Quart. J. Roy. Meteor. Soc., 120, 1085–1103.

    Article  Google Scholar 

  • Voulgarakis, A., P. Hadjinicolaou, J. A. Pyle, 2011: Increases in global tropospheric ozone following an El Niño event: examining stratospheric ozone variability as a potential driver. Atmos. Sci. Lett., 12, 228–232.

    Article  Google Scholar 

  • Wang, K.-Y., J. A. Pyle, and D. E. Shallcross, 2001a: Formulation and evaluation of IMS, an interactive three-dimensional tropospheric chemical transport model 1. Model emission schemes and transport processes. J. Atmos. Chem., 38, 195–227.

    Article  Google Scholar 

  • —, —, D. E. Shallcross, and D. J. Lary, 2001b: Formulation and evaluation of IMS, an interactive three-dimensional tropospheric chemical transport model 2. Model chemistry and comparison of modelled CH4, CO, and O3 with surface measurements. J. Atmos. Chem., 38, 31–71.

    Article  Google Scholar 

  • Wang, Y., J. A. Logan, and D. J. Jacob, 1998: Global simulation of tropospheric O3-NOx-hydrocarbon chemistry 3. Origin of tropospheric ozone and effects of nomenthane hydrocarbons. J. Geophys. Res., 103, 10,757-10,767.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuo-Ying Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, KY., Kau, WS. Simulation of impact from stratospheric ozone on global tropospheric ozone distribution with a chemistry transport model: A case study during the 1990–1991 period. Asia-Pacific J Atmos Sci 51, 137–155 (2015). https://doi.org/10.1007/s13143-015-0064-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-015-0064-7

Key words

Navigation