Skip to main content
Log in

Local Imbalance of Turbulent Kinetic Energy in the Surface Layer

  • Original Paper
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

We utilize experimental data collected in 2002 over an open field in Hanford, Washington, USA, to investigate the turbulent kinetic energy (TKE) budget in the atmospheric surface layer. The von Kármán constant was determined from the near-neutral wind profiles to be 0.36 ± 0.02 rather than the classical value of 0.4. The TKE budget was normalized and all terms were parameterized as functions of a stability parameter z/L, where z is the distance from the ground and L is the Obukhov length. The shear production followed the Businger–Dyer relation for −2 < z/L < 1. Contrary to the traditional Monin–Obukhov similarity theory (MOST), the shear, buoyancy and dissipation terms were found to be imbalanced due to a non-zero vertical transport over all stabilities. Motivated by this local imbalance, modified parameterizations of the dissipation and the turbulent transport were attempted and generated good agreement with the experimental data. Assuming stationarity and horizontal homogeneity, the pressure transport was estimated from the residual of the TKE budget.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albertson JD, Parlange MB, Kiely G, Eichinger WE (1997) The average dissipation rate of turbulent kinetic energy in the neutral and unstable atmospheric surface layer. J Geophys Res 102: 13423–13432. doi:10.1029/96JD03346

    Article  Google Scholar 

  • Andreas EL, Claffey KJ, Jordan RE, Fairall CW, Guest PS, Persson POG et al (2006) Evaluation of the von Kármán constant in the atmospheric surface layer. J Fluid Mech 559: 117–149. doi:10.1017/S0022112006000164

    Article  Google Scholar 

  • Beljaars ACM, Holtslag AAM (1991) Flux parameterization over land surfaces for atmospheric models. J Appl Meteorol 30: 327–341. doi:10.1175/1520-0450(1991)030<0327:FPOLSF>2.0.CO;2

    Article  Google Scholar 

  • Bradley EF, Antonia RA, Chambers AJ (1981) Turbulent Reynolds number and the TKE balance in the atmospheric surface layer. Boundary-Layer Meteorol 21: 183–197. doi:10.1007/BF02033936

    Article  Google Scholar 

  • Businger JA, Wyngaard JC, Isumi Y, Bradley EF (1971) Flux–profile relationships in the atmospheric surface layer. J Atmos Sci 28: 181–189. doi:10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2

    Article  Google Scholar 

  • Carl DM, Tarbell TC, Panofsky HA (1973) Profiles of wind and temperature from towers over homogeneous terrain. J Atmos Sci 30: 788–794. doi:10.1175/1520-0469(1973)030<0788:POWATF>2.0.CO;2

    Article  Google Scholar 

  • Caughey SJ, Wyngaard JC (1979) The turbulent kinetic energy budget in convective conditions. Q J R Meteorol Soc 105: 231–239. doi:10.1002/qj.49710544315

    Article  Google Scholar 

  • Champagne FH, Friehe CA, LaRue JC, Wyngaard JC (1977) Flux measurements, flux estimation techniques, and fine-scale measurements in the unstable surface layer over land. J Atmos Sci 34: 515–530. doi:10.1175/1520-0469(1977)034<0515:FMFETA>2.0.CO;2

    Article  Google Scholar 

  • Deacon EL (1988) The streamwise Kolmogorov constant. Boundary-Layer Meteorol 42: 9–17. doi:10.1007/BF00119871

    Article  Google Scholar 

  • Doran JC (2004) Characteristics of intermittent turbulent temperature fluxes in stable conditions. Boundary-Layer Meteorol 112: 241–255. doi:10.1023/B:BOUN.0000027907.06649.d0

    Article  Google Scholar 

  • Dyer AJ (1974) A review of flux–profile relationships. Boundary-Layer Meteorol 7: 363–372. doi:10.1007/BF00240838

    Article  Google Scholar 

  • Dyer AJ, Bradley EF (1982) An alternative analysis of flux–gradient relationships at 1976 ITCE. Boundary-Layer Meteorol 22: 3–19. doi:10.1007/BF00128053

    Article  Google Scholar 

  • Edson JB, Fairall CW (1998) Similarity relationships in the marine atmospheric surface layer for terms in the TKE and scalar variance budgets. J Atmos Sci 55: 2311–2328. doi:10.1175/1520-0469(1998)055<2311:SRITMA>2.0.CO;2

    Article  Google Scholar 

  • Foken T (2006) 50 Years of the Monin–Obukhov similarity theory. Boundary-Layer Meteorol 119: 431–447. doi:10.1007/s10546-006-9048-6

    Article  Google Scholar 

  • Frenzen P (1983) On the role of flux-divergence terms in the turbulent kinetic energy equation. In: 6th symp. on turbul. and diffusion, Amer. Meteorol. Soc., Boston, MA, pp 24–27

  • Frenzen P, Vogel CA (1992) The turbulent kinetic energy budget in the atmospheric surface layer: a review and an experimental reexamination in the field. Boundary-Layer Meteorol 60: 49–76. doi:10.1007/BF00122061

    Article  Google Scholar 

  • Frenzen P, Vogel CA (2001) Further studies of atmospheric turbulence in layers near the surface: scaling the TKE budget above the roughness sublayer. Boundary-Layer Meteorol 99: 173–206. doi:10.1023/A:1018956931957

    Article  Google Scholar 

  • Gavrilov AS, Petrov YS (1981) Accuracy of the estimates for turbulent fluxes measured over the sea by standard hydrometeorological instruments. Meteor i Gidrol 4: 52–59

    Google Scholar 

  • Grachev AA, Fairall CW, Persson POG, Andreas EL, Guest PS (2005) Stable boundary-layer scaling regimes: the SHEBA data. Boundary-Layer Meteorol 116: 201–235. doi:10.1007/s10546-004-2729-0

    Article  Google Scholar 

  • Högström U (1990) Analysis of turbulence structures in the surface layer with a modified similarity formulation for near neutral conditions. J Atmos Sci 47: 1949–1972. doi:10.1175/1520-0469(1990)047<1949:AOTSIT>2.0.CO;2

    Article  Google Scholar 

  • Högström U (1992) Further evidence of ‘inactive’ turbulence in the near neutral atmospheric surface layer. In: 10th symp. on turbul. and diffusion, Portland, OR, Am. Meteorol. Soc., Boston, MA, pp 188–191

  • Högström U (1996) Review of some basic characteristics of the atmospheric surface layer. Boundary-Layer Meteorol 78: 215–246. doi:10.1007/BF00120937

    Article  Google Scholar 

  • Högström U, Hunt JCR, Smedman AS (2002) Theory and measurements for turbulence spectra and variances in the atmospheric neutral surface layer. Boundary-Layer Meteorol 103: 101–124

    Article  Google Scholar 

  • Kader BA (1992) Determination of turbulent momentum and heat fluxes by spectral methods. Boundary-Layer Meteorol 61: 323–347. doi:10.1007/BF00119096

    Article  Google Scholar 

  • Kader BA, Yaglom AM (1990) Mean fields and fluctuation moments in unstably stratified turbulent boundary layers. J Fluid Mech 212: 637–662. doi:10.1017/S0022112090002129

    Article  Google Scholar 

  • Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: their structure and measurement. Oxford University Press, New York, p 289

    Google Scholar 

  • Kaimal JC, Gaynor JE (1991) Another look at sonic thermometry. Boundary-Layer Meteorol 56: 401–410. doi:10.1007/BF00119215

    Article  Google Scholar 

  • Kaimal JC, Gaynor JE, Zimmerman HA, Zimmerman GA (1990) Minimizing flow distortion errors in a sonic anemometer. Boundary-Layer Meteorol 53: 103–115. doi:10.1007/BF00122466

    Article  Google Scholar 

  • Leavitt E, Paulson CA (1975) Statistics of surface layer turbulence over the tropical ocean. J Phys Oceanogr 5: 143–156. doi:10.1175/1520-0485(1975)005<0143:SOSLTO>2.0.CO;2

    Article  Google Scholar 

  • Mahrt L, Moore E, Vickers D, Jensen NO (2001) Dependence of turbulent and mesoscale velocity variances on scale and stability. J Appl Meteorol 40: 628–641. doi:10.1175/1520-0450(2001)040< 0628:DOTAMV>2.0.CO;2

    Article  Google Scholar 

  • Maitani T, Seo T (1985) Estimates of velocity-pressure and velocity-pressure gradient interaction in the surface layer over plant canopies. Boundary-Layer Meteorol 33: 51–60. doi:10.1007/BF00137035

    Article  Google Scholar 

  • McBean GA, Elliot JA (1975) Vertical transports of kinetic energy by turbulence and pressure in the boundary layer. J Atmos Sci 32: 753–766. doi:10.1175/1520-0469(1975)032<0753:TVTOKE>2.0.CO;2

    Article  Google Scholar 

  • Monin AS, Obukhov AM (1954) Basic laws of turbulent mixing in the atmosphere near the ground. Tr Geofiz Inst Akad Nauk SSSR 24: 163–187

    Google Scholar 

  • Oncley SP, Horst TW, Prakovsky A, Wilczak JM (1995) The TKE budget from the FLAT experiment. In: 11th symp. on bound. layers and turbul., Charlotte, NC, Amer. Meteorol. Soc., Boston, MA, pp 5–8

  • Oncley SP, Friehe CA, LaRue JC, Businger JA, Itsweire EC, Chang SS (1996) Surface-layer fluxes, profiles, and turbulent measurements over uniform terrain under near-neutral conditions. J Atmos Sci 53: 1029–1044. doi:10.1175/1520-0469(1996)053<1029:SLFPAT>2.0.CO;2

    Article  Google Scholar 

  • Pahlow M, Parlange MB, Porte-Agel F (2001) On Monin–Obukhov similarity in the stable atmospheric boundary layer. Boundary-Layer Meteorol 99: 225–248. doi:10.1023/A:1018909000098

    Article  Google Scholar 

  • Panofsky HA, Dutton JA (1984) Atmospheric turbulence: models and methods for engineering applications. Wiley, New York, p 397

    Google Scholar 

  • Panofsky HA, Blackadar AK, McVehil GE (1960) The diabatic wind profile. Quart J Roy Meteorol Soc 86: 495–503. doi:10.1002/qj.49708637006

    Article  Google Scholar 

  • Purtell LI, Klebanoff PS, Buckley FT (1981) Turbulent boundary layer at low Reynolds number. Phys Fluids 24: 802–811. doi:10.1063/1.863452

    Article  Google Scholar 

  • Schacher GE, Davidson KL, Houlihan T, Fairall CW (1981) Measurements of the rate of dissipation of turbulent kinetic energy over the ocean. Boundary-Layer Meteorol 20: 321–330. doi:10.1007/BF00121376

    Article  Google Scholar 

  • Schols JLJ, Wartena L (1986) A dynamical description of turbulent structures in the near-neutral surface layer: the role of static pressure fluctuations. Boundary-Layer Meteorol 34: 1–15. doi:10.1007/BF00120905

    Article  Google Scholar 

  • Schotanus P, Nieuwstadt FTM, de Bruin HAR (1983) Temperature measurements with a sonic anemometer and its application to heat and moisture fluxes. Boundary-Layer Meteorol 26: 81–93. doi:10.1007/BF00164332

    Article  Google Scholar 

  • Smedman AS (1988) Observations of multi-level turbulence structure in a very stable atmospheric boundary layer. Boundary-Layer Meteorol 44: 231–253. doi:10.1007/BF00116064

    Article  Google Scholar 

  • Smedman AS, Högström U, Hunt JCR, Sahlee E (2007) Heat/mass transfer in the slight unstable atmospheric surface layer. Quart J Roy Meteorol Soc 133: 37–51. doi:10.1002/qj.7

    Article  Google Scholar 

  • Sreenivasan KR (1995) On the universality of the Kolmogorov constant. Phys Fluids 7: 2778–2784. doi:10.1063/1.868656

    Article  Google Scholar 

  • Swinbank WC (1964) The exponential profile. Q J R Meteorol Soc 90: 119–135. doi:10.1002/qj.49709038402

    Article  Google Scholar 

  • Telford JW (1982) A theoretical value for von Kármán’s constant. Pure Appl Geophys 120: 648–661. doi:10.1007/BF00876650

    Article  Google Scholar 

  • Telford JW, Businger JA (1986) Comments on ‘Von Kármán’s constant in atmospheric boundary layer flow: reevaluated’. J Atmos Sci 43: 2127–2130. doi:10.1175/1520-0469(1986)043<2127:COKCIA>2.0.CO;2

    Article  Google Scholar 

  • Vickers D, Mahrt L (2003) The cospectral gap and turbulent flux calculations. J Atmos Ocean Technol 20: 660–672. doi:10.1175/1520-0426(2003)20<660:TCGATF>2.0.CO;2

    Article  Google Scholar 

  • Wieringa J (1980) A revaluation of Kansas mast influence on measurements of stress and cup anemometer overspending. Boundary-Layer Meteorol 18: 411–430. doi:10.1007/BF00119497

    Article  Google Scholar 

  • Wilczak JM, Businger JA (1984) Large-scale eddies in the unstable stratified atmospheric surface layer. Part II: Turbulent pressure fluctuations and the budgets of heat flux, stress and turbulent kinetic energy. J Atmos Sci 41: 3551–3567. doi:10.1175/1520-0469(1984)041<3551:LSEITU>2.0.CO;2

    Article  Google Scholar 

  • Wilczak JM, Bedard AJ Jr, Edson J, Hare J, Hojstrup J, Mahrt L (1995) Pressure transport measured on a sea mast during the RASEX program. In: 11th symp. on bound. layers and turbul., Charlotte, NC, Am. Meteorol. Soc., Boston, MA, pp 11–14

  • Willis GE, Deardorff JW (1976) On the use of Taylor’s translation hypothesis for diffusion in the mixed layer. Quart J Roy Meteorol Soc 102: 817–822. doi:10.1002/qj.49710243411

    Article  Google Scholar 

  • Wyngaard JC, Clifford SF (1977) Taylor’s hypothesis and high-frequency turbulence spectra. J Atmos Sci 34: 922–929. doi:10.1175/1520-0469(1977)034<0922:THAHTS>2.0.CO;2

    Article  Google Scholar 

  • Wyngaard JC, Coté OR (1971) The budget of turbulent kinetic energy and temperature variance in the atmospheric surface layer. J Atmos Sci 28: 190–201. doi:10.1175/1520-0469(1971)028< 0190:TBOTKE>2.0.CO;2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangyi Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Zimmerman, N. & Princevac, M. Local Imbalance of Turbulent Kinetic Energy in the Surface Layer. Boundary-Layer Meteorol 129, 115–136 (2008). https://doi.org/10.1007/s10546-008-9304-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-008-9304-z

Keywords

Navigation