Skip to main content

Advertisement

Log in

KSNM60 in Nuclear Endocrinology: from the Beginning to the Future

  • Review
  • Published:
Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Nuclear endocrinology is the main ignitor for founding the Korean Society of Nuclear Medicine (KSNM) in the early 1960s by outstanding pioneering medical doctors. Management of thyroid diseases required nuclear medicine technology in the early days of the KSNM and was rapidly developed by advancements in nuclear medicine technology. Nuclear thyroidology remains one of the main clinical applications in nuclear medicine worldwide. Nuclear medicine technology provides essential information for diagnosing and assessing diseases of the parathyroid glands, pituitary gland, and neuroendocrine tumors (NETs). In addition, therapeutic nuclear medicine is essential for managing nonresectable NETs. Nuclear endocrinology remains a major section in clinical nuclear medicine, and members of the KSNM have contributed to progressing better management of benign and malignant endocrine diseases. This review summarizes the historical activities and milestone contributions to nuclear endocrinology made by the members of the KSNM over the past 60 years to congratulate the KSNM on its 60-year anniversary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Contact the corresponding author for data requests.

References

  1. 50 Year Department of Nuclear Medicine Seoul National University. 2010.

  2. Toh SH. Thyroid and radioactive I131. J Korean Med Assoc. 1961;4:72–83.

    CAS  Google Scholar 

  3. Chun MH, Kim YS, Suh DS, Bae SH, Hong SC, Toh SH. A long follow-up study on Graves’ disease after I131 Treatment. Korean J Med. 1969;12:641–7.

    Google Scholar 

  4. Cho BY, Koh CS. Current trends in the diagnosis and treatment of Graves’ disease in Korea. Endocrinol Metab. 1992;7:216–27.

    Google Scholar 

  5. Moon JH, Yi KH. The diagnosis and management of hyperthyroidism in Korea: consensus report of the Korean Thyroid Association. Endocrinol Metab (Seoul). 2013;28:275–9.

    Article  Google Scholar 

  6. Statistics of Nuclear Medicine in Korea. In. https://www.ksnm.or.kr///education/sub2_5.php? Accessed 18 Jul 2021.

  7. Cancer Registry Statistics in Korea (KOSIS). In. https://kosis.kr/statHtml/statHtml.do?orgId=117&tblId=DT_117N_A00023. Accessed 18 Jul 2021.

  8. Lee J, Jo I. Differentiated thyroid cancer and radioactive Iodine: past, present and future. Int J Thyroidol. 2019;12:71–8.

    Article  Google Scholar 

  9. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26:1–133.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lee MH, Kang SS, Koh CS, Lee JK, Nam KY, Jin BH, et al. Investigation and treatment of disease of the thyroid gland with radioactive iodine. Korean J Med. 1961;4:29–48.

    Google Scholar 

  11. The Korean Society of Nuclear Medicine: 50 years. The Korean Society of Nuclear Medicine; 2011.

  12. Mazzaferri EL, Jhiang SM. Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am J Med. 1994;97:418–28.

    Article  CAS  PubMed  Google Scholar 

  13. Dai G, Levy O, Carrasco N. Cloning and characterization of the thyroid iodide transporter. Nature. 1996;379:458–60.

    Article  CAS  PubMed  Google Scholar 

  14. Min JJ, Chung JK, Lee YJ, Jeong JM, Lee DS, Jang JJ, et al. Relationship between expression of the sodium/iodide symporter and 131I uptake in recurrent lesions of differentiated thyroid carcinoma. Eur J Nucl Med. 2001;28:639–45.

    Article  CAS  PubMed  Google Scholar 

  15. Chung JK, So Y, Lee JS, Choi CW, Lim SM, Lee DS, et al. Value of FDG PET in papillary thyroid carcinoma with negative 131I whole-body scan. J Nucl Med. 1999;40:986–92.

    CAS  PubMed  Google Scholar 

  16. Moon SH, Oh YL, Choi JY, Baek CH, Son YI, Jeong HS, et al. Comparison of 18F-fluorodeoxyglucose uptake with the expressions of glucose transporter type 1 and Na+/I- symporter in patients with untreated papillary thyroid carcinoma. Endocr Res. 2013;38:77–84.

    Article  CAS  PubMed  Google Scholar 

  17. Hong CM, Ahn BC, Jeong SY, Lee SW, Lee J. Distant metastatic lesions in patients with differentiated thyroid carcinoma Clinical implications of radioiodine and FDG uptake. Nuklearmedizin. 2013;52(121):9.

    Google Scholar 

  18. Oh JR, Byun BH, Hong SP, Chong A, Kim J, Yoo SW, et al. Comparison of 131I whole-body imaging, 131I SPECT/CT, and 18F-FDG PET/CT in the detection of metastatic thyroid cancer. Eur J Nucl Med Mol Imaging. 2011;38:1459–68.

    Article  PubMed  Google Scholar 

  19. Jeong SY, Lee SW, Kim HW, Song BI, Ahn BC, Lee J. Clinical applications of SPECT/CT after first I-131 ablation in patients with differentiated thyroid cancer. Clin Endocrinol (Oxf). 2014;81:445–51.

    Article  CAS  Google Scholar 

  20. Hong CM, Kim CY, Son SH, Jung JH, Lee CH, Jeong JH, et al. I-131 biokinetics of remnant normal thyroid tissue and residual thyroid cancer in patients with differentiated thyroid cancer: comparison between recombinant human TSH administration and thyroid hormone withdrawal. Ann Nucl Med. 2017;31:582–9.

    Article  CAS  PubMed  Google Scholar 

  21. Kavitha M, Lee CH, Shibudas K, Kurita T, Ahn BC. Deep learning enables automated localization of the metastatic lymph node for thyroid cancer on (131)I post-ablation whole-body planar scans. Sci Rep. 2020;10:7738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chun AR, Jo HM, Lee SH, Chun HW, Park JM, Kim KJ, et al. Risk of malignancy in thyroid incidentalomas identified by fluorodeoxyglucose-positron emission tomography. Endocrinol Metab (Seoul). 2015;30:71–7.

    Article  CAS  Google Scholar 

  23. Kwon SY, Kim J, Jung SH, Chong A, Song HC, Bom HS, et al. Preablative stimulated thyroglobulin levels can predict malignant potential and therapeutic responsiveness of subcentimeter-sized, 18F-fluorodeoxyglucose-avid cervical lymph nodes in patients with papillary thyroid cancer. Clin Nucl Med. 2016;41:e32–8.

    Article  PubMed  Google Scholar 

  24. Cho SG, Kwon SY, Kim J, Cho DH, Na MH, Kang SR, et al. Risk factors of malignant fluorodeoxyglucose-avid lymph node on preablation positron emission tomography in patients with papillary thyroid cancer undergoing radioiodine ablation therapy. Medicine (Baltimore). 2019;98:e14858.

    Article  Google Scholar 

  25. Jung JH, Kim CY, Son SH, Kim DH, Jeong SY, Lee SW, et al. Preoperative prediction of cervical lymph node metastasis using primary tumor SUVmax on 18F-FDG PET/CT in patients with papillary thyroid carcinoma. PLoS One. 2015;10:e0144152.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kang SY, Bang JI, Kang KW, Lee HY, Chung JK. FDG PET/CT for the early prediction of RAI therapy response in patients with metastatic differentiated thyroid carcinoma. PLoS One. 2019;14:e0218416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kwon SY, Choi EK, Kong EJ, Chong A, Ha JM, Chun KA, et al. Prognostic value of preoperative 18F-FDG PET/CT in papillary thyroid cancer patients with a high metastatic lymph node ratio: a multicenter retrospective cohort study. Nucl Med Commun. 2017;38:402–6.

    Article  PubMed  Google Scholar 

  28. Kim DH, Kim SJ. Diagnostic role of F-18 FDG PET/CT for preoperative lymph node staging in thyroid cancer patients; a systematic review and metaanalysis. Clin Imaging. 2020;65:100–7.

    Article  PubMed  Google Scholar 

  29. Kim K, Shim SR, Lee SW, Kim SJ. Diagnostic values of F-18 FDG PET or PET/CT, CT, and US for preoperative lymph node staging in thyroid cancer: a network meta-analysis. Br J Radiol. 2021;94:20201076.

    Article  PubMed  Google Scholar 

  30. Lee JJ, Chung JK, Kim SE, Kang WJ, Park DJ, Lee DS, et al. Maximal safe dose of I-131 after failure of standard fixed dose therapy in patients with differentiated thyroid carcinoma. Ann Nucl Med. 2008;22:727–34.

    Article  PubMed  Google Scholar 

  31. Oh SW, Moon SH, Park DJ, Cho BY, Jung KC, Lee DS, et al. Combined therapy with 131I and retinoic acid in Korean patients with radioiodine-refractory papillary thyroid cancer. Eur J Nucl Med Mol Imaging. 2011;38:1798–805.

    Article  CAS  PubMed  Google Scholar 

  32. Singh TD, Jeong SY, Lee SW, Ha JH, Lee IK, Kim SH, et al. Inverse agonist of estrogen-related receptor γ enhances sodium iodide symporter function through mitogen-activated protein kinase signaling in anaplastic thyroid cancer cells. J Nucl Med. 2015;56:1690–6.

    Article  CAS  PubMed  Google Scholar 

  33. Choi YJ, Lee JE, Ji HD, Lee BR, Lee SB, Kim KS, et al. Tunicamycin as a novel redifferentiation agent in radioiodine therapy for anaplastic thyroid cancer. Int J Mol Sci. 2021;22:1077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chung T, Youn H, Yeom CJ, Kang KW, Chung JK. Glycosylation of sodium/iodide symporter (NIS) regulates its membrane translocation and radioiodine uptake. PLoS One. 2015;10:e0142984.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kim YH, Youn H, Na J, Hong KJ, Kang KW, Lee DS, et al. Codon-optimized human sodium iodide symporter (opt-hNIS) as a sensitive reporter and efficient therapeutic gene. Theranostics. 2015;5:86–96.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Oh JM, Kalimuthu S, Gangadaran P, Baek SH, Zhu L, Lee HW, et al. Reverting iodine avidity of radioactive-iodine refractory thyroid cancer with a new tyrosine kinase inhibitor (K905–0266) excavated by high-throughput NIS (sodium iodide symporter) enhancer screening platform using dual reporter gene system. Oncotarget. 2018;9:7075–87.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Oh JM, Baek SH, Gangadaran P, Hong CM, Rajendran RL, Lee HW, et al. A novel tyrosine kinase inhibitor can augment radioactive iodine uptake through endogenous sodium/iodide symporter expression in anaplastic thyroid cancer. Thyroid. 2020;30:501–18.

    Article  CAS  PubMed  Google Scholar 

  38. Lim SM, Hong SW, Lee JO, Kang TW. The change of the salivary function after the high dobe radioiodine treatment in the patients with differentiated thyroid dancer. Korean J Nucl Med. 1989;23:7–12.

    Google Scholar 

  39. Jeong SY, Kim HW, Lee SW, Ahn BC, Lee J. Salivary gland function 5 years after radioactive iodine ablation in patients with differentiated thyroid cancer: direct comparison of pre- and postablation scintigraphies and their relation to xerostomia symptoms. Thyroid. 2013;23:609–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Son SH, Hong CM, Jeong SY, Lee J, Ahn B-C. Clinical outcome of parotid gland massage for preventing parotid gland dysfunction in patients treated with radioiodine therapy for differentiated thyroid cancer: a prospective longitudinal follow-up study. Int J Thyroidol. 2021;14:6–17.

    Article  Google Scholar 

  41. Kim HW, Ahn BC, Lee SW, Lee J. Effect of parotid gland massage on parotid gland Tc-99m pertechnetate uptake. Thyroid. 2012;22:611–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hong CM, Son SH, Kim CY, Kim DH, Jeong SY, Lee SW, et al. Emptying effect of massage on parotid gland radioiodine content. Nucl Med Commun. 2014;35:1127–31.

    Article  CAS  PubMed  Google Scholar 

  43. Son SH, Lee CH, Jung JH, Kim DH, Hong CM, Jeong JH, et al. The preventive effect of parotid gland massage on salivary gland dysfunction during high-dose radioactive iodine therapy for differentiated thyroid cancer: a randomized clinical trial. Clin Nucl Med. 2019;44:625–33.

    Article  PubMed  Google Scholar 

  44. Ahn BC. Reduction of salivary gland damage during radioiodine therapy for differentiated thyroid cancers. Nucl Med Mol Imaging. 2020;54:126–7.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Yi KH, Moon JH, Kim I-J, Bom H-S, Lee J, Chung WY, et al. The diagnosis and management of hyperthyroidism consensus - report of the Korean Thyroid Association. Int J Thyroidol. 2013;6:1–11.

    Google Scholar 

  46. Yi KH, Park YJ, Koong S-S, Kim J-H, Na DG, Ryu J-S, et al. Revised Korean Thyroid Association management guidelines for patients with thyroid nodules and thyroid cancer. Int J Thyroidol. 2010;3:65–96.

    Google Scholar 

  47. Yi KH, Lee EK, Kang H-C, Koh Y, Kim SW, Kim IJ, et al. 2016 Revised Korean Thyroid Association management guidelines for patients with thyroid nodules and thyroid cancer. Int J Thyroidol. 2016;9:59–126.

    Article  Google Scholar 

  48. Ahn BC, Kang H-C, Oh S, Kim BH, Lee KH, Park WS, et al. Radioiodine therapy guidance for patients. 2nd ed.: Korean Thyroid Association; 2019.

  49. Choi EK, Chong A, Ha JM, Jung CK, O JH, Kim SH,. Clinicopathological characteristics including BRAF V600E mutation status and PET/CT findings in papillary thyroid carcinoma. Clin Endocrinol (Oxf). 2017;87:73–9.

    Article  CAS  Google Scholar 

  50. Chong A, Ha JM, Han YH, Kong E, Choi Y, Hong KH, et al. Preoperative lymph node staging by FDG PET/CT with contrast enhancement for thyroid cancer: a multicenter study and comparison with neck CT. Clin Exp Otorhinolaryngol. 2017;10:121–8.

    Article  PubMed  Google Scholar 

  51. Kwon SY, Lee SW, Kong EJ, Kim K, Kim BI, Kim J, et al. Clinicopathologic risk factors of radioactive iodine therapy based on response assessment in patients with differentiated thyroid cancer: a multicenter retrospective cohort study. Eur J Nucl Med Mol Imaging. 2020;47:561–71.

    Article  CAS  PubMed  Google Scholar 

  52. Yalow RS, Berson SA. Assay of plasma insulin in human subjects by immunological methods. Nature. 1959;184:1648–9.

    Article  CAS  PubMed  Google Scholar 

  53. Kim DJ, Min BS, Bahk YW, Kim BS. Determination of serum thyroxine levels in normal Korean subjects and various thyroid diseases. Korean J Nucl Med. 1969;3:33–8.

    Google Scholar 

  54. Scientific division of the Korean Society of Nuclear Medicine. Standardization of thyroidal radioiodine (131I) uptake study in Korea. Korean J Nucl Med. 1971;5:71–6.

  55. Bahk Y-W, Kim W-I, Chung S-K. Progress report on “external quality assessment in radioimmunoassay of thyroid-related hormones in the Republic of Korea, 1986.” Korean J Nucl Med. 1987;21:1–3.

    Google Scholar 

  56. Brewer HB Jr, Fairwell T, Ronan R, Sizemore GW, Arnaud CD. Human parathyroid hormone: amino-acid sequence of the amino-terminal residues 1–34. Proc Natl Acad Sci U S A. 1972;69:3585–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Suliburk JW, Perrier ND. Primary hyperparathyroidism. Oncologist. 2007;12:644–53.

    Article  PubMed  Google Scholar 

  58. Ziessman HA, O’Malley JP, Thrall JH. Nuclear medicine: the requisites. Elsevier Health Sciences; 2013.

  59. Cheon M, Choi JY, Chung JH, Lee JY, Cho SK, Yoo J, et al. Differential findings of Tc-99m sestamibi dual-phase parathyroid scintigraphy between benign and malignant parathyroid lesions in patients with primary hyperparathyroidism. Nucl Med Mol Imaging. 2011;45:276–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hwang SH, Rhee Y, Yun M, Yoon JH, Lee JW, Cho A. Usefulness of SPECT/CT in parathyroid lesion detection in patients with thyroid parenchymal (99m)Tc-sestamibi retention. Nucl Med Mol Imaging. 2017;51:32–9.

    Article  PubMed  Google Scholar 

  61. Im HJ, Lee IK, Paeng JC, Lee KE, Cheon GJ, Kang KW, et al. Functional evaluation of parathyroid adenoma using 99mTc-MIBI parathyroid SPECT/CT: correlation with functional markers and disease severity. Nucl Med Commun. 2014;35(6):649–54.

    Article  CAS  PubMed  Google Scholar 

  62. Suh HY, Na HY, Park SY, Choi JY, So Y, Lee WW, et al. The usefulness of maximum standardized uptake value at the delayed phase of Tc-99m sestamibi single-photon emission computed tomography/computed tomography for identification of parathyroid adenoma and hyperplasia. Medicine (Baltimore). 2020;99:e21176.

    Article  CAS  Google Scholar 

  63. Lee SH, Shin E, Ha S, Oh JS, Song DE, Ryu JS. Is dual-phase SPECT/CT with 99mTc-sestamibi better than single-phase SPECT/CT for lesion localization in patients with hyperparathyroidism? Medicine (Baltimore). 2020;99(19):e19989.

    Article  CAS  Google Scholar 

  64. Kim SJ, Lee SW, Jeong SY, Pak K, Kim K. Diagnostic performance of F-18 fluorocholine PET/CT for parathyroid localization in hyperparathyroidism: a systematic review and meta-analysis. Horm Cancer. 2018;9:440–7.

    Article  CAS  PubMed  Google Scholar 

  65. Chun IK, Cheon GJ, Paeng JC, Kang KW, Chung JK, Lee DS. Detection and characterization of parathyroid adenoma/hyperplasia for preoperative localization: comparison between (11)C-methionine PET/CT and (99m)Tc-sestamibi scintigraphy. Nucl Med Mol Imaging. 2013;47:166–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shimon I, Melmed S. Genetic basis of endocrine disease: pituitary tumor pathogenesis. J Clin Endocrinol Metab. 1997;82:1675–81.

    CAS  PubMed  Google Scholar 

  67. Hyun SH, Choi JY, Lee KH, Choe YS, Kim BT. Incidental focal 18F-FDG uptake in the pituitary gland: clinical significance and differential diagnostic criteria. J Nucl Med. 2011;52:547–50.

    Article  PubMed  Google Scholar 

  68. Jeong YH, Kim D, Lee JW, Rhee Y, Nam KH, Yun M, et al. Pituitary 18F-FDG uptake correlates with serum TSH levels in subjects with diffuse thyroid 18F-FDG uptake. Clin Nucl Med. 2015;40:632–6.

    Article  PubMed  Google Scholar 

  69. Rufini V, Calcagni ML, Baum RP. Imaging of neuroendocrine tumors. Semin Nucl Med. 2006;36:228–47.

    Article  PubMed  Google Scholar 

  70. Sisson J, Shapiro B, Beierwaltes WH, Nakajo M, Glowniak J, Mangner T, et al. Treatment of malignant pheochromocytoma with a new radiopharmaceutical. Trans Assoc Am Physicians. 1983;96:209–17.

    CAS  PubMed  Google Scholar 

  71. Moon EH, Lim ST, Jeong YJ, Kim DW, Jeong HJ, Sohn MH. Efficacy of I-123/I-131 metaiodobenzylguanidine scan as a single initial diagnostic modality in pheochromocytoma: comparison with biochemical test and anatomic imaging. Nucl Med Mol Imaging. 2009;43:436–42.

    Google Scholar 

  72. Lee EJ, Lee KH. PET application in neuroendocrine tumors. Endocrinol Metab (Seoul). 2007;22:397–406.

    Google Scholar 

  73. Yoo C, Oh CR, Kim ST, Bae WK, Choi HJ, Oh DY, et al. Systemic treatment of advanced gastroenteropancreatic neuroendocrine tumors in Korea: literature review and expert opinion. Cancer Res Treat. 2021;53:291–300.

    Article  CAS  PubMed  Google Scholar 

  74. Lee SW, Shim SR, Jeong SY, Kim SJ. Comparison of 5 different PET radiopharmaceuticals for the detection of recurrent medullary thyroid carcinoma: a network meta-analysis. Clin Nucl Med. 2020;45:341–8.

    Article  PubMed  Google Scholar 

  75. Ku EJ, Kim KJ, Kim JH, Kim MK, Ahn CH, Lee KA, et al. Diagnosis for pheochromocytoma and paraganglioma: a joint position statement of the Korean pheochromocytoma and paraganglioma task force. Endocrinol Metab (Seoul). 2021;36:322–38.

    Article  CAS  Google Scholar 

  76. Fassnacht M, Assie G, Baudin E, Eisenhofer G, de la Fouchardiere C, Haak HR, et al. Adrenocortical carcinomas and malignant phaeochromocytomas: ESMO-EURACAN clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2020;31:1476–90.

    Article  CAS  PubMed  Google Scholar 

  77. Lee DY, Lee SH, Kim BJ, Kim W, Yoon PW, Lee SJ, et al. Usefulness of 68Ga-DOTATOC PET/CT to localize the culprit tumor inducing osteomalacia. Sci Rep. 2021;11:1819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lee JW, Lee S, Cho HW, Ma Y, Yoo KH, Sung KW, et al. Incorporation of high-dose (131)I-metaiodobenzylguanidine treatment into tandem high-dose chemotherapy and autologous stem cell transplantation for high-risk neuroblastoma: results of the SMC NB-2009 study. J Hematol Oncol. 2017;10:108.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Suh JK, Koh KN, Min SY, Kim YS, Kim H, Im HJ, et al. Feasibility and effectiveness of treatment strategy of tandem high-dose chemotherapy and autologous stem cell transplantation in combination with (131) I-MIBG therapy for high-risk neuroblastoma. Pediatr Transplant. 2020;24:e13658.

  80. Marco M, Antonella C, Ettore S. Peptide receptor radionuclide therapy after NETTER-1 clinical trial: what should not be left behind. Clin Trans Imaging. 2019;7:155–7.

    Article  Google Scholar 

  81. Strosberg J, El-Haddad G, Wolin E, Hendifar A, Yao J, Chasen B, et al. Phase 3 trial of (177)Lu-Dotatate for midgut neuroendocrine tumors. N Engl J Med. 2017;376:125–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kang KW. Functional imaging and peptide receptor radionuclide therapy for pancreatic neuroendocrine tumor. Korean J Pancreas Biliary Tract. 2021;26:10–4.

    Article  Google Scholar 

  83. Oh S, Prasad V, Lee DS, Baum RP. Effect of peptide receptor radionuclide therapy on somatostatin receptor status and glucose metabolism in neuroendocrine tumors: intraindividual comparison of Ga-68 DOTANOC PET/CT and F-18 FDG PET/CT. Int J Mol Imaging. 2011;2011:524130.

  84. Kim SJ, Pak K, Koo PJ, Kwak JJ, Chang S. The efficacy of (177)Lu-labelled peptide receptor radionuclide therapy in patients with neuroendocrine tumours: a meta-analysis. Eur J Nucl Med Mol Imaging. 2015;42:1964–70.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The study was designed by Byeong-Cheol Ahn. Material preparation and data collection were performed by Chae Moon Hong, Young Jin Jeong, and Hae Won Kim. The data analysis was performed by Chae Moon Hong, Young Jin Jeong, and Hae Won Kim. The first draft of the manuscript was written by Chae Moon Hong, Young Jin Jeong, and Hae Won Kim and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Byeong-Cheol Ahn.

Ethics declarations

Competing Interests

Chae Moon Hong, Young Jin Jeong, Hae Won Kim, and Byeong-Cheol Ahn declare that they have no competing interests.

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, C.M., Jeong, Y.J., Kim, H.W. et al. KSNM60 in Nuclear Endocrinology: from the Beginning to the Future. Nucl Med Mol Imaging 56, 17–28 (2022). https://doi.org/10.1007/s13139-021-00728-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13139-021-00728-0

Keywords

Navigation