Skip to main content
Log in

Multi-variate Hardy-type lattice point summation and Shannon-type sampling

  • Original Paper
  • Published:
GEM - International Journal on Geomathematics Aims and scope Submit manuscript

Abstract

The famous Shannon sampling theorem gives an answer to the question of how a one-dimensional time-dependent bandlimited signal can be reconstructed from discrete values in lattice points. In this work, we are concerned with multi-variate Hardy-type lattice point identities from which space-dependent Shannon-type sampling theorems can be obtained by straightforward integration over certain regular regions. An answer is given to the problem of how a signal bandlimited to a regular region in q-dimensional Euclidean space allows a reconstruction from discrete values in the lattice points of a (general) q-dimensional lattice. Weighted Hardy-type lattice point formulas are derived to allow explicit characterizations of over- and undersampling, thereby specifying not only the occurrence, but also the type of aliasing in a thorough mathematical description. An essential tool for the proof of Hardy-type identities in lattice point theory is the extension of the Euler summation formula to second order Helmholtz-type operators involving associated Green functions with respect to the “boundary condition” of periodicity. In order to circumvent convergence difficulties and/or slow convergence in multi-variate Hardy-type lattice point summation, some summability methods are necessary, namely lattice ball and Gauß–Weierstraß averaging. As a consequence, multi-variate Shannon-type lattice sampling becomes available in a proposed summability context to accelerate the summation of the associated cardinal-type series. Finally, some aspects of constructive approximation in a resulting Paley–Wiener framework are indicated, such as the recovery of a finite set of lost samples, the reproducing Hilbert space context of spline interpolation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aldroubi, A., Gröchenig, K.: Nonuniform sampling and reconstruction in shift invariant spaces. SIAM Rev. 43, 585–620 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Aldroubi, A., Sun, Q., Tang, W.-S.: \(\rho \)-frames and shift-invariant subspaces on \(L^\rho \). J. Fourier Anal. Appl. 7, 1–21 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Aldroubi, A., Sun, Q., Tang, W.-S.: Nonuniform average sampling and reconstruction in multiply generated shift-invariant spaces. Constr. Approx. 20, 173–189 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Aldroubi, A., Sun, Q., Tang, W.-S.: Convolution, average sampling and a calderon resolution of the identity for shift-invariant spaces. J. Fourier Anal. Appl. 22, 215–244 (2004)

    MathSciNet  Google Scholar 

  • Behmard, H., Faridani, A.: Sampling of bandlimited functions on unions of shifted lattices. J. Fourier Anal. Appl. 8, 43–58 (2001)

    Article  MathSciNet  Google Scholar 

  • Benedetto, J.J., Ferreira, P.J.S.G. (eds.): Modern Sampling Theory: Mathematics and Applications. Birkhäuser, Boston (2001)

    Google Scholar 

  • Benedetto, J.J., Zayed, A.I. (eds.): Sampling, Wavelets, and Tomography. Birkhäuser, Boston (2003)

    Google Scholar 

  • Bi, N., Nashed, M.Z., Sun, Q.: Reconstructing signals with finite rate of innovation from noisy samples. Acta Appl. Math. 107, 309–372 (2009)

    Article  MathSciNet  Google Scholar 

  • Butzer, P.L.: A survey of the Whittaker Shannon sampling theorem and some of its extensions. J. Math. Res. Expos. 3, 185–212 (1983)

    MathSciNet  Google Scholar 

  • Butzer P.L., Stens, R.L.: The Euler–MacLaurin summation formula, the sampling theorem, and approximate integration over the real axis. In: Linear Algebra and Its Applications 52/53, 141–155 (1983)

  • Butzer, P.L., Stens, R.L.: Sampling theory for not necessarily band-limited functions: a historical overview. SIAM Rev. 34, 40–53 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  • Butzer, P.L., Splettstößer, W., Stens, R.L.: The sampling theorem and linear prediction in signal analysis. Jahresber. Deutsch. Math. Vereinigung (DMV) 90, 1–60 (1988)

    MATH  Google Scholar 

  • Cassels, J.W.S.: An Introduction to the Geometry of Numbers. Springer, Berlin (1968)

    Google Scholar 

  • Cluny, F., Costarelli, D., Minotti, A., Vinti, G.: Enhancement of thermographic images as tool for structural analysis in eathquake engineering. NDT & E Int. 70, 60–72 (2015)

    Article  Google Scholar 

  • Costarelli, D., Vinti, G.: Approximation by nonlinear multivariate sampling Kontorovich type operators and applications to image processing. Numer. Funct. Anal. Optim. 34, 819–844 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  • Euler, L.: Methodus universalis serierum convergentium summas quam proxime inveniendi. Commentarii Academiae Scientiarum Petropolitanae. 8, 3–9 (1736) (Opera Omnia XIV, 101–107)

  • Euler, L.: Methodus universalis series summandi ulterius promota. Commentarii Academiae Scientarium Petropolitanae 8, 147–158 (1736) (Opera Omnia XIV, 124–137)

  • Freeden, W.: Eine Verallgemeinerung der Hardyschen Identität. PhD-Thesis, RWTH Aachen (1975)

  • Freeden, W.: Über eine Verallgemeinerung der Hardy–Landauschen Identität. Manuscr. Math. 24, 205–216 (1978)

  • Freeden, W.: Multidimensional Euler summation formulas and numerical cubature. ISNM 57, 77–88 (1982)

    Google Scholar 

  • Freeden, W.: Interpolation by multidimensional periodic splines. J. Approx. Theory 55, 104–117 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  • Freeden, W.: Metaharmonic Lattice Point Theory. CRC Press, Chapman & Hall, Boca Raton (2011)

    MATH  Google Scholar 

  • Freeden, W., Gerhards, C.: Geomathematically Oriented Potential Theory. Chapman and Hall, CRC Press, Taylor & Francis, Boca Raton (2013)

    MATH  Google Scholar 

  • Freeden, W., Gutting, M.: Special Functions of Mathematical (Geo-)Physics. Birkhäuser, Basel (2013)

    Book  MATH  Google Scholar 

  • Freeden, W., Nashed, M.Z., Sonar, T. (eds.): Geomathematics: Its Role, Its Aim, and Its Potential. Handbook of Geomathematics, 2nd edn. Springer, Berlin, Heidelberg (2015)

    Google Scholar 

  • Fricker, F.: Einführung in die Gitterpunktlehre. Birkhäuser, Basel (1982)

    Book  MATH  Google Scholar 

  • Gauß, C.F.: De nexu inter multitudinem classicum, in quas formae binariae secondi gradus distribuuntur, earumque determinantem. Werke 2, 269–291 (1826)

    Google Scholar 

  • Haddad, R.A., Parsons, T.W.: Digital Signal Processing: Theory. Applications and Hardware. Computer Science Press, USA (1991)

  • Han, D., Nashed, M.Z., Sun, Q.: Sampling expansions in reproducing kernel Hilbert and Banach spaces. Num. Funct. Anal. Optim. 30, 971–987 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • Hardy, G.H.: On the expression of a number as the sum of two squares. Q. J. Math. (Oxford) 46, 263–283 (1915)

    MATH  Google Scholar 

  • Hardy, G.H., Landau, E.: The lattice points of a circle. Proc. R. Soc. A 105, 244–258 (1924)

    Article  MATH  Google Scholar 

  • Higgins, J.R.: Five short stories about the cardinal series. Bull. Am. Math. Soc. 12, 45–89 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  • Higgins, J.R.: Sampling Theory in Fourier and Signal Analysis: Foundations, vol. 1. Oxford University Press, Oxford (1996)

    Google Scholar 

  • Higgins, J.R., Stens, R.L.: Sampling Theory in Fourier and Signal Analysis: Advanced Topics, vol. 2. Oxford Science Publications, Oxford (2000)

    Google Scholar 

  • Hilbert, D.: Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen. Teubner, Leipzig (1912)

    MATH  Google Scholar 

  • Hlawka, E.: Zur Geometrie der Zahlen. Math. Z. 49, 285–312 (1943)

    Article  MATH  MathSciNet  Google Scholar 

  • Hlawka, E.: Grundbegriffe der Geometrie der Zahlen. Jber. Deutsch. Mathem. Vereinigung 57, 37–55 (1954)

    MATH  MathSciNet  Google Scholar 

  • Hlawka, E., Schoißengeier, J., Taschner, R.: Geometric and Analytic Number Theory. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  • Ismail, M., Nashed, M.Z., Zayed, A., Ghaleb, A.: Mathematical analysis, wavelets and signal processing. In: Contemporary Mathematics, vol. 190. American Mathematical Society, Providence (1995)

  • Ivanow, V.K.: A generalization of the Voronoi–Hardy identity. Sibirsk. Math. Z. 3, 195–212 (1962)

    Google Scholar 

  • Ivanow, V.K.: Higher-dimensional generalization of the Euler summation formula (Russian). Izv. Vyss. Ucebn. Zaved. Mathematika 6(37), 72–80 (1963)

    Google Scholar 

  • Jerri, J.A.: The Shannon sampling theorem—its various extensions and applications: a tutorial review. Proc. IEEE 65, 1565–1596 (1977)

    Article  MATH  Google Scholar 

  • Kalker, T.: On Multidimensional Sampling. In: Madisetti, V.K., Williams, D.B. (eds.) Digital Signal Processing Handbook. CRC Press, Boca Raton (1999)

    Google Scholar 

  • Kellogg, O.D.: Foundations of Potential Theory. Frederick Ungar Publishing Company, New York (1929)

    Book  Google Scholar 

  • Kotel’nikov, V.A.: On the carrying capacity of the ether and wire in telecommunications. In: Material for the First All-Union Conference on Questions of Communication, Izd. Red. Upr. Svyazi RKKA, Moscow (1933, in Russian)

  • Kramer, H.P.: A generalized sampling theorem. J. Math. Phys. 38, 68–72 (1959)

    Article  MATH  Google Scholar 

  • Landau, E.: Über die Gitterpunkte in einem Kreis (Erste Mitteilung). Gött. Nachr., 148–160 (1915)

  • Landau, E.: Vorlesungen über Zahlentheorie. Chelsea Publishing Compagny, New York (1969). (reprint from the orignal version published by S. Hirzel, Leipzig, 1927)

    MATH  Google Scholar 

  • Larson, D., Massopust, P., Nashed, M.Z., Nguyen, M.C., Papadakis, M., Zayed, A., (eds.) Frames and Operator Theory in Analysis and Signal Processing. Contemporary Mathematics, vol. 451. American Mathematical Society, Providence (2008)

  • Lekkerkerker, C.G.: Geometry of Numbers. North Holland, Amsterdam (1969)

    MATH  Google Scholar 

  • Magnus, W., Oberhettinger, F., Soni, R.P.: Formulas and Theorems for the Special Functions of Mathematical Physics. In: Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Band 52, 3. Auflage. Springer, Berlin (1966)

  • Marks II, R.J.: Introduction to Shannon Sampling and Interpolation Theory. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  • Marks II, R.J.: Advanced Topics in Shannon Sampling and Interpolation Theory. Springer, Berlin (1993)

    Book  Google Scholar 

  • Marvasti, F.A., (ed.) Nonuniform Sampling: Theory and Practice. Information Technology Transmission, Processing, and Storage. Plenum Publ. Corp., New York (2001)

  • Michlin, S.G.: Mathematical Physics, an Advanced Course. North Holland, Amsterdam (1970)

    Google Scholar 

  • Minkowski, H.: Geometrie der Zahlen. Teubner, Leipzig (1896)

    Google Scholar 

  • Mordell, L.J.: Poisson’s summation formula in several variables and some applications to the theory of numbers. Cambr. Phil. Soc. 25, 412–420 (1928a)

  • Mordell, L.J.: Some applications of Fourier series in the analytic theory of numbers. Cambr. Phil. Soc. 24, 585–595 (1928b)

    Article  MATH  Google Scholar 

  • Mordell, L.J.: Poisson’s summation formula and the Riemann zeta function. J. Lond. Math. Soc. 4, 285–296 (1929)

    Article  MATH  MathSciNet  Google Scholar 

  • Müller, C.: Über die ganzen Lösungen der Wellengleichung (nach einem Vortrag von G. Herglotz). Math. Ann. 124, 235–264 (1952)

  • Müller, C.: Eine Verallgemeinerung der Eulerschen Summenformel und ihre Anwendung auf Fragen der analytischen Zahlentheorie. Abh. Math. Sem. Univ. Hamburg 19, 41–61 (1954a)

    Article  MATH  MathSciNet  Google Scholar 

  • Müller, C.: Eine Formel der analytischen Zahlentheorie. Abh. Math. Sem. Univ. Hamburg 19, 62–65 (1954b)

    Article  MATH  MathSciNet  Google Scholar 

  • Müller, C.: Eine Erweiterung der Hardyschen Identität. Abh. Math. Sem. Univ. Hamburg 19, 66–76 (1954c)

    Article  MATH  MathSciNet  Google Scholar 

  • Müller, C.: Analysis of Spherical Symmetries in Euclidean Spaces. Springer, New York (1998)

    Book  MATH  Google Scholar 

  • Nashed, M.Z.: Inverse problems, moment problems. In: Siddiqi, A.H., Singh, R.C. Manchanda, P. (eds.) Signal Processing: Un Menage a Trois, Mathematics in Science and Technology. World Scientific, New Jersey, pp. 1–19 (2010)

  • Nashed, M.Z., Scherzer, O.: Inverse problems, image analysis and medical imaging. In: Contemporary Mathematics, vol. 313. American Mathematical Socienty, Providence (2002)

  • Nashed, M.Z., Sun, Q.: Sampling and reconstruction of signals in a reproducing kernel subspace of \(L^\rho (R^d)\). J. Funct. Anal. 258, 2422–2452 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  • Nashed, Z.M., Sun, Q.: Function spaces for sampling expansions. In: Shen, X., Zayed, A.I. (eds.) Multiscale Signal Analysis and Modeling, pp. 81–104 (2013)

  • Nashed, M.Z., Sun, Q., Tang, W.S.: Average sampling in \(L^2\). Can. Acad. Sci., Ser. 1(347), 1007–1010 (2009)

  • Nashed, M.Z., Walter, G.G.: General sampling theorems for functions in reproducing kernel Hilbert spaces. Math. Contr. Signals Syst. 4, 363–390 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  • Nashed, M.Z., Walter, G.G.: Reproducing kernel Hilbert space from sampling expansions. Contemp. Math. 190, 221–226 (1995)

    Article  MathSciNet  Google Scholar 

  • Nyquist, H.: Certain topics in telegraph transmission theory. Trans. AIEE 47, 617–644 (1928)

    Google Scholar 

  • Papoulis, A.: Signal Analysis. McGraw-Hill, New York (1971)

    Google Scholar 

  • Papoulis, A.: Generalized sampling expansion. IEEE Trans. Circ. Syst. 24, 652–654 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  • Parzen E.: A simple proof and some extensions of the sampling theorem. Technical Report No. 7, Department of Statistics, Stanford University, pp. 1–10 (1956)

  • Pinsky, M.A.: Introduction to Fourier Analysis and Wavelets. CA, Brooks/Cole, Thomson Learning, Pacific Grove (2002)

  • Shannon, C.E.: Communication in the presence of noise. Proc. Inst. Radio Eng. 37, 10–21 (1949)

    MathSciNet  Google Scholar 

  • Shen, X., Zayed, A.I. (eds.): Multiscale Signal Analysis and Modeling. Springer, New York (2013)

    MATH  Google Scholar 

  • Smale, S., Zhou, D.-X.: Shannon sampling and function reconstruction from point values. Bull. Am. Math. Soc. 41, 279–305 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton (1971)

    MATH  Google Scholar 

  • Stenger, F.: Approximations via Whittaker’s cardinal function. J. Approx. Theory 17, 222–240 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  • Stenger, F.: Numerical methods based on Whittaker cardinal or sinc functions. SIAM Rev. 23, 165–224 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  • Sun, Q.: Non-uniform sampling and reconstruction for signals with finite rate of innovations. SIAM J. Math. Anal. 38, 1389–1422 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Sun, Q.: Frames in spaces with finite rate of innovation. Adv. Comput. Math. 28, 301–329 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Sun, Q.: Local reconstruction for sampling in shift-invariant spaces. Adv. Comput. Math. 32, 335–352 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  • Unser, M.: Sampling—50 years after Shannon. Proc. IEEE 88, 569–587 (2000)

    Article  Google Scholar 

  • van der Mee, C., Nashed, M.Z., Seatzu, S.: Sampling expansions and interpolation in unitarily translation invariant reproducing kernel Hilbert spaces. Adv. Comput. Math. 19, 355–372 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Vetterli, M., Marziliano, P., Blu, T.: Sampling signals with finite rate of innovation. IEEE Trans. Signal Process. 50, 1417–1428 (2002)

    Article  MathSciNet  Google Scholar 

  • Walter, A.V., Schäfer, R.W.: Digital Signal Processing. Prentice-Hall, New Jersey (1989)

    Google Scholar 

  • Walter, G.G.: A sampling theorem for wavelet subspace. IEEE Trans. Inform. Theor. 38, 881–884 (1992)

    Article  MATH  Google Scholar 

  • Walter, G.G., Shen, X.: Wavelets and Other Orthogonal Systems, 2nd edn. CRC Press, USA (2002)

    Google Scholar 

  • Watson, G.N.: A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge University Press, Cambridge (1944)

    MATH  Google Scholar 

  • Weber, E.: The geometry of sampling on unions of lattices. In: Proceedings of the American Mathematical Society, USA (2002)

  • Whittaker, E.T.: On the functions which are represented by the expansions of the interpolation theory. Proc. R. Soc. Edinburgh Sec. A 35:181–194 (1915)

  • Yao, K.: Applications of reproducing kernel Hilbert spaces of bandlimited signal models. Inform. Contr. 11, 429–444 (1967)

    Article  MATH  Google Scholar 

  • Zayed, A.I.: Advances in Shannon’s Sampling Theory. CRC Press, Boca Raton (1993)

    MATH  Google Scholar 

  • Zayed, A.I., Schmeisser, G.: New perspectives on approximation and sampling. In: Applied and Harmonic Analysis. Birkhäuser, Basel (2014)

Download references

Acknowledgments

The authors thank their colleagues Akram Aldroubi, Mathematics Department, Vanderbilt University, Nashville (USA), Gunter Malle, Mathematics Department, University of Kaiserslautern (Germany), and Gianluca Vinti, Dipartimento di Matematica e Informatica, Universita degli Studi di Perugia (Italy) for valuable comments during the review process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willi Freeden.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freeden, W., Nashed, M.Z. Multi-variate Hardy-type lattice point summation and Shannon-type sampling. Int J Geomath 6, 163–249 (2015). https://doi.org/10.1007/s13137-015-0076-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13137-015-0076-6

Keywords

Mathematics Subject Classification

Navigation