Skip to main content

Advertisement

Log in

On the role of poroelasticity for modeling of stress fields in geothermal reservoirs

  • Original Paper
  • Published:
GEM - International Journal on Geomathematics Aims and scope Submit manuscript

Abstract

With growing interest in the safety and environment of our planet, geomathematics as the mathematics related to the “system Earth” finds itself challenged by new problems nearly every day. Some of these problems come from the field of renewable energy resources. Especially geothermics which is concerned with extracting the heat of the Earth’s crust and making it usable for the heat and energy market needs sophisticated mathematical methods to model geothermal reservoirs (see Ilyasov et al. 2010 and the references therein for an overview). One of the quantities which are essential for successful modeling is the stress field of the geothermal reservoir. Changes in the stress field influence the opening and growth of fractures and can also lead to seismic events. For an accurate model, we have to consider the interactions between the pressure of a fluid (water) which is injected into the Earth and the stresses of the rock and soil strata into which this pressurized fluid is pumped. In 1966, J. Geertsma introduced the term poroelasticity for the description of these interactions (Wang 2000). In this paper, we will give a short geomathematical introduction and survey into the field of poroelasticity. After the derivation of the basic partial differential equations for consolidation processes, we will discuss existence and uniqueness of weak solutions. Moreover, we will establish boundary integral equations and introduce a numerical solution scheme based on these boundary integral equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkin R., Crain R.: Continuum theories of mixtures: applications. J. Inst. Math. Appl. 17(2), 153–207 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  • Augustin M.: Mathematical aspects of stress field simulations in deep geothermal reservoirs. Schriften zur Funktionalanalysis und Geomathematik 50, 1–26 (2011)

    Google Scholar 

  • Augustin, M., Freeden, W., Gerhards, C., Möhringer, S., Ostermann, I.: Mathematische Methoden in der Geothermie. Math Semesterber. doi:10.1007/s00591-011-0093-y (2011)

  • Auriault, J.-L.: Contribution à l’étude de la consolidation des sols. PhD Thesis, L’Université scientifique et médicale de Grenoble, France (1973)

  • Auriault J.-L., Sanchez-Palencia E.: Étude du comportement macroscopique d’un milieu poreux saturé déformable. J. Mécanique 16(4), 575–603 (1977)

    MathSciNet  MATH  Google Scholar 

  • Barucq H., Madaune-Tort M., Saint-Macary P.: Theoretical aspects of wave propagation for Biot’s consolidation problem. Monografías del Seminarío Matemático García de Galdeano 31, 449–458 (2004)

    MathSciNet  Google Scholar 

  • Barucq H., Madaune-Tort M., Saint-Macary P.: Some existence-uniqueness results for a class of one-dimensional nonlinear Biot models. Nonlinear Anal. Theory Methods Appl. 61(4), 591–612 (2005a)

    Article  MathSciNet  MATH  Google Scholar 

  • Barucq H., Madaune-Tort M., Saint-Macary P.: On nonlinear Biot’s consolidation models. Nonlinear Anal. Theory Methods Appl. 63(5–7), e985–e995 (2005b)

    MATH  Google Scholar 

  • Barucq H., Madaune-Tort M., Saint-Macary P.: Asymptotic Biot modes in porous media. Adv. Differ. Equ. 11(1), 61–90 (2006)

    MathSciNet  MATH  Google Scholar 

  • Biot M.: Le problème de la consolidation des matières argileuses sous une charge. Ann. Soc. Sci. Bruxelles B 55, 110–113 (1935)

    Google Scholar 

  • Biot M.: General theory of three-dimensional consolidation. J. Appl. Phys. 12(2), 151–164 (1941)

    Article  Google Scholar 

  • Biot M.: General solutions of the equations of elasticity and consolidation for a porous material. J. Appl. Mech. Trans. ASME 78, 91–96 (1956)

    MathSciNet  Google Scholar 

  • Brown R., Mitrea I.: The mixed problem for the Lamé system in a class of Lipschitz domains. J. Differ. Equ. 246(7), 2577–2589 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Brown R., Mitrea I., Mitrea M., Wright M.: Mixed boundary value problems for the Stokes system. Trans. Am. Math. Soc. 362(3), 1211–1230 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Cheng A., Detournay E.: On singular integral equations and fundamental solutions of poroelasticity. Int. J. Solids Struct. 35(34–35), 4521–4555 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Ciarlet P.: Studies in Mathematics and its Applications: Mathematical Elasticity. Three-Dimensional Elasticity, vol. I. North-Holland, Amsterdam (1994)

    Google Scholar 

  • Costabel M.: Boundary integral operators for the heat equation. Integr. Equ. Operator Theory 13(4), 498–552 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Costabel, M.: Time-dependent problems with the boundary integral equation method. In: Encyclopedia of Computational Mechanics, chap. 25. Wiley, New York (2004)

  • Dafermos C.: On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity. Arch. Ration. Mech. Anal. 29(4), 1521–1536 (1968)

    Article  MathSciNet  Google Scholar 

  • Freeden, W: Least squares approximation by linear combinations of (multi-)poles. Report 344, Department of Geodetic Science and Surveying, The Ohio State University, Columbus (1983)

  • Freeden W., Michel V.: Multiscale Potential Theory With Applications to Geoscience. Birkhäuser, Boston (2004)

    MATH  Google Scholar 

  • Friedrichs K.: On the boundary-value problems of the theory of elasticity and Korn’s inequality. Ann. Math. 48(2), 441–471 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  • Giusti E.: Direct Methods in the Calculus of Variations. World Scientific, Singapore (2003)

    Book  MATH  Google Scholar 

  • Golberg M.: The method of fundamental solutions for Poisson’s equation. Eng. Anal. Bound. Elem. 16(3), 205–213 (1995)

    Article  Google Scholar 

  • Golberg, M., Chen, C.: The method of fundamental solutions for potential, Helmholtz and diffusion problems. In: Golberg, M. (ed.) Boundary Integral Methods—Numerical and Mathematical Aspects, chap. 4, pp. 103–176. WIT Press, Computational Mechanics Publications, Southampton (1998)

  • Ilyasov, M., Ostermann, I., Punzi, A.: Modeling deep geothermal reservoirs: recent advances and future problems. In: Freeden, W., Nashed, Z., Sonar, T. (eds.) Handbook of Geomathematics, chap. 22, pp. 679–711. Springer, Berlin (2010)

  • Jackson J.: Classical Electrodynamics. Wiley, New York (1998)

    Google Scholar 

  • Jaeger J., Cook N., Zimmerman R.: Fundamentals of Rock Mechanics. Blackwell, Malden (2007)

    Google Scholar 

  • Kita E., Kamiya N.: Trefftz method: an overview. Adv. Eng. Softw. 24(1–3), 3–12 (1995)

    Article  MATH  Google Scholar 

  • Kupradze V., Aleksidze M.: The method of functional equations for the approximate solution of certain boundary value problems. USSR Comp. Math. Math. Phys. 4(4), 82–126 (1964)

    Article  MathSciNet  Google Scholar 

  • Ladyzhenskaya O.: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, New York (1969)

    MATH  Google Scholar 

  • Lai M., Krempl E., Ruben D.: Introduction to Continuum Mechanics. Butterworth-Heinemann, Burlington (2010)

    Google Scholar 

  • Landau L., Pitaevskii L., Lifshitz E., Kosevich A.: Theory of Elasticity, Theoretical Physics, vol. 7. Butterworth-Heinemann, Oxford (1986)

    Google Scholar 

  • Lions, J.: Equations Differentielles Operationelles et Problèmes aux Limites. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, vol. 111. Springer, Berlin (1961)

  • Lions J., Magenes E.: Non-Homogeneous Boundary Value Problems and Applications I. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, vol. 181. Springer, Berlin (1972)

    Google Scholar 

  • Liu G., Xie K., Zheng R.: Model of nonlinear coupled thermo-hydro-elastodynamics response for a saturated poroelastic medium. Sci. China Ser. E Tech. Sci. 52(8), 2373–2383 (2009)

    Article  MATH  Google Scholar 

  • Lopatnikov S., Gillespie J.: Poroelasticity-I: Governing Equations of the Mechanics of Fluid-Saturated Porous Materials. Transp. Porous Med. 84(2), 471–492 (2010)

    Article  MathSciNet  Google Scholar 

  • Mikhlin S.: Mathematical Physics: An Advanced Course. North-Holland, Amsterdam (1970)

    MATH  Google Scholar 

  • Nardini, D., Brebbia, C.: A new approach for free vibration analysis using boundary elements. In: Brebbia, C. (ed.) Boundary Element Methods in Engineering Proceedings, pp. 312–326. Springer, Berlin (1982)

  • Navarro C., Quintanilla R.: On existence and uniqueness in incremental thermoelasticity. ZAMP 35(2), 206–215 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  • Ostermann, I.: Modeling heat transport in deep geothermal systems by radial basis functions. PhD Thesis, TU Kaiserslautern, Geomathematics Group, Germany, Dr. Hut Verlag, Munich (2011a)

  • Ostermann I.: Three-dimensional modeling of heat transport in deep hydrothermal reservoirs. Int. J. Geomath. 2(1), 37–68 (2011b)

    Article  MathSciNet  MATH  Google Scholar 

  • Owczarek S.: A Galerkin method for Biot consolidation model. Math. Methods Solids 15(1), 42–56 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Phillips, P.: Finite element method in linear poroelasticity: theoretical and computational results. PhD Thesis, University of Texas, Austin (2005)

  • Phillips P., Wheeler M.: A coupling of mixed and continuous Galerkin finite element methods for poroelasticity I: the continuous in time case. Comput. Geosci. 11(2), 131–144 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Power H., Wrobel L.: Boundary Integral Methods in Fluid Mechanics. WIT Press, Computational Mechanics Publications, Southampton (1995)

    MATH  Google Scholar 

  • Renardy M., Rogers R.: An Introduction to Partial Differential Equations. Texts in Applied Mathematics, vol. 13. Springer, New York (1993)

    Google Scholar 

  • Ritz W.: Über eine neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik. J. Reine Angew Math. 135(1), 1–6 (1909)

    MathSciNet  Google Scholar 

  • Runge C.: Zur Theorie der eindeutigen analytischen Funktionen. Acta Math. 6(1), 229–234 (1885)

    Article  MathSciNet  MATH  Google Scholar 

  • Saint-Macary, P.: Analyse mathématique de modèles de diffusion en milieu poreux élastique. PhD Thesis, L’Université de Pau et des Pays de l’Adour, France (2004)

  • Schanz M.: Application of 3D time domain boundary element formulation to wave propagation in poroelastic solids. Eng. Anal. Bound. Elem. 25(4–5), 363–376 (2001)

    Article  MATH  Google Scholar 

  • Showalter R.: Diffusion in poro-elastic media. J. Math. Anal. Appl. 251(1), 310–340 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Smyrlis Y.-S., Karageorghis A.: Efficient implementation of the MFS: the three scenarios. J. Comput. Appl. Math. 227(1), 83–92 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Trefftz, E.: Ein Gegenstück zum Ritzschen Verfahren. Proc. 2nd Int. Cong. Appl. Mech., Zurich, pp. 131–137 (1926)

  • Vgenopoulou I., Beskos D.: Dynamic behavior of saturated poroviscoelastic media. Acta Mech. 95(1), 185–195 (1992)

    Article  MATH  Google Scholar 

  • Walsh J.: The approximation of harmonic functions by harmonic polynomials and by harmonic rational functions. Bull. Am. Math. Soc. 35(4), 499–544 (1929)

    Article  MATH  Google Scholar 

  • Wang H.: Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology. Princeton University Press, Princeton (2000)

    Google Scholar 

  • Wloka J.: Partial Differential Equations. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  • Yosida K.: Functional Analysis. Springer, Berlin (1980)

    MATH  Google Scholar 

  • Ženíšek A.: The existence and uniqueness theorem in Biot’s consolidation theory. Appl. Math. 29(3), 194–211 (1984)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Augustin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Augustin, M. On the role of poroelasticity for modeling of stress fields in geothermal reservoirs. Int J Geomath 3, 67–93 (2012). https://doi.org/10.1007/s13137-012-0032-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13137-012-0032-7

Keywords

Mathematics Subject Classification

Navigation