Skip to main content

Applications for Deep Geothermal Engineering

  • Chapter
  • First Online:
Modelling Rock Fracturing Processes
  • 1047 Accesses

Abstract

There is mounting interest in developing deep geothermal energy because of its abundant potential as the base-load renewable energy source. Numerical modelling has been widely used to advance the fundamentals towards addressing the grand challenges ahead for efficient and sustainable development of geothermal energy. In this chapter, we first provided a review of state of the art of numerical modelling related to the dynamics of geothermal reservoirs and the stimulation of reservoirs to increase the performance of enhanced geothermal system (EGS). We then presented two modelling applications concerning convective heat transfer through a single fracture and borehole breakout at geothermal wells. The heat transfer characteristics of water flowing through a single fracture within a cylindrical granite specimen was investigated by integrating the experiment and the simulation. The breakout geometry was modeled to estimate the in situ stress at the geothermal sites in Cooper Basin, Australia, and Pohang, South Korea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Backers T, Stephansson O (2015) ISRM suggested method for the determination of mode II fracture toughness. In: The ISRM suggested methods for rock characterization, testing and monitoring: 2007–2014. Springer, Cham

    Google Scholar 

  • Bai B, He Y, Li X, Hu S, Huang X, Li J, Zhu J (2016) Local heat transfer characteristics of water flowing through a single fracture within a cylindrical granite specimen. Environ Earth Sci 75(22):1460

    Article  Google Scholar 

  • Beckman WA, Broman L, Fiksel A, Klein SA, Lindberg E, Schuler M, Thornton J (1994) TRNSYS the most complete solar energy system modeling and simulation software. Renew Energy 5(1–4):486–488

    Article  Google Scholar 

  • Bertani R (2016) Geothermal power generation in the world 2010–2014 update report. Geothermics 60:31–43

    Article  Google Scholar 

  • Blöcher MG, Zimmermann G, Moeck I, Brandt W, Hassanzadegan A, Magri F (2010) 3D numerical modeling of hydrothermal processes during the lifetime of a deep geothermal reservoir. Geofluids 10(3):406–421

    Article  Google Scholar 

  • Breede K, Dzebisashvili K, Liu X, Falcone G (2013) A systematic review of enhanced (or engineered) geothermal systems: past, present and future. Geotherm Energy 1(1):1–27

    Article  Google Scholar 

  • Cacace M, Jacquey AB (2017) Flexible parallel implicit modelling of coupled thermal–hydraulic–mechanical processes in fractured rocks. Solid Earth 8(5):921–941

    Article  Google Scholar 

  • Cacace M, Blöcher G, Watanabe N, Moeck I, Börsing N, Scheck-Wenderoth M et al (2013) Modelling of fractured carbonate reservoirs: outline of a novel technique via a case study from the Molasse Basin, southern Bavaria, Germany. Environ Earth Sci 70(8):3585–3602

    Article  Google Scholar 

  • Charlez P, Lemonnier P, Ruffet C, Boutéca MJ, Tan C (1996) Thermally induced fracturing: analysis of a field case in North Sea. In: European Petroleum Conference. Society of Petroleum Engineers, Richardson

    Google Scholar 

  • Cleary MP (1994) Critical issues in hydraulic fracturing of high-permeability reservoirs. In: European production operations conference and exhibition. Society of Petroleum Engineers, Dallas

    Google Scholar 

  • Comsol Multiphysics®. ver 5.4. (2018). Reference manual

    Google Scholar 

  • Diersch HJG (2013) FEFLOW: finite element modeling of flow, mass and heat transport in porous and fractured media. Springer, Berlin

    Google Scholar 

  • DiPippo R (2012) Geothermal power plants: principles, applications, case studies and environmental impact. Butterworth-Heinemann, Amsterdam, pp 1–17

    Book  Google Scholar 

  • Economides MJ, Nolte KG (2000) Reservoir stimulation, 3rd edn. Wiley, New York. 856 pp

    Google Scholar 

  • FRACOM. (2002). User’s manual. FRACOM Ltd

    Google Scholar 

  • Freymark J, Sippel J, Scheck-Wenderoth M, Bär K, Stiller M, Fritsche J-G, Kracht M (2017) The deep thermal field of the upper Rhine Graben. Tectonophysics 694:114–129

    Article  Google Scholar 

  • Frick S, Kaltschmitt M, Schröder G (2010) Life cycle assessment of geothermal binary power plants using enhanced low-temperature reservoirs. Energy 35(5):2281–2294

    Article  Google Scholar 

  • Gaston D, Newman C, Hansen G, Lebrun-Grandié D (2009) MOOSE: a parallel computational framework for coupled systems of nonlinear equations. Nucl Eng Des 239(10):1768–1778

    Article  Google Scholar 

  • Guéguen Y, Boutéca M (eds.) (2004) Mechanics of fluid-saturated rocks (vol 89). Elsevier

    Google Scholar 

  • Häring MO, Schanz U, Ladner F, Dyer BC (2008) Characterisation of the Basel 1 enhanced geothermal system. Geothermics 37:469–495

    Article  Google Scholar 

  • He Y, Bai B, Hu S, Li X (2016) Effects of surface roughness on the heat transfer characteristics of water flow through a single granite fracture. Comput Geotech 80:312–321

    Article  Google Scholar 

  • Hill RR, Meyer JJ, Magee ME (1997). The contemporary stress field of the Nappamerri Trough and its implications for tight gas resources. Report of Department of Geology and Geophysics, University of Adelaide, SA 5005, Australia

    Google Scholar 

  • Hofmann H, Babadagli T, Zimmermann G (2014a) Hot water generation for oil sands processing from enhanced geothermal systems: process simulation for different hydraulic fracturing scenarios. Appl Energy 113:524–547

    Article  Google Scholar 

  • Hofmann H, Weides S, Babadagli T, Zimmermann G, Moeck I, Majorowicz J, Unsworth M (2014b) Potential for enhanced geothermal systems in Alberta, Canada. Energy 69:578–591

    Article  Google Scholar 

  • Huang X, Zhu J, Li J, Bai B, Zhang G (2016) Fluid friction and heat transfer through a single rough fracture in granitic rock under confining pressure. Int Commun Heat Mass Transfer 1(1):111–123

    Google Scholar 

  • Itasca (2008) PFC2D (particle flow code in 2 dimensions) theory and background. Minnesota, USA

    Google Scholar 

  • Kim H, Xie L, Min KB, Bae S, Stephansson O (2017) Integrated in situ stress estimation by hydraulic fracturing, borehole observations and numerical analysis at the EXP-1 borehole in Pohang, Korea. Rock Mech Rock Eng 50(12):3141–3155

    Article  Google Scholar 

  • Klein SA, (1976) TRNSYS-A transient simulation program. ASHRAE Trans, 82, 623

    Google Scholar 

  • Kolditz O, Shao H, Wang W, Bauer S (eds) (2015) Thermo-hydro-mechanical-chemical processes in fractured porous media: modelling and benchmarking – closed form solutions, Terrestrial Environmental Sciences, vol 1. Springer, Cham, p 315

    Google Scholar 

  • Kranz S, Frick S (2013) Efficient cooling energy supply with aquifer thermal energy storages. Appl Energy 109:321–327

    Article  Google Scholar 

  • Luo F, Rui-Na Xu R-N, Pei-Xue Jiang P-X (2014) Numerical investigation of fluid flow and heat transfer in a doublet enhanced geothermal system with CO2 as the working fluid (CO2-EGS). Energy 64:307–322

    Article  Google Scholar 

  • Martin CD, Read RS, Martino JB (1997) Observations of brittle failure around circular test tunnel. Int J Rock Mech Min Sci 34(77):1065–1073

    Article  Google Scholar 

  • MFRAC (2011) User’s guide Meyer fracturing simulators, 9th edn. Meyer & Associates, Natrona Heights

    Google Scholar 

  • MIT (2006) The future of geothermal energy: impact of enhanced geothermal systems (EGS) on the United States in the 21st century. Massachusetts Institute of Technology, Cambridge, pp 1-1–1-34

    Google Scholar 

  • Olasolo P, Juárez M, Morales M, Liarte I (2016) Enhanced geothermal systems (EGS): a review. Renew Sust Energ Rev 56:133–144

    Article  Google Scholar 

  • Parkhurst DL, Appelo CAJ (2013) Description of input and examples for PHREEQC version 3—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations: U.S. geological survey techniques and methods, book 6, chap. A43, 497 p., available only at https://pubs.usgs.gov/tm/06/a43/

  • Portier S, Vuataz F-D, Nami P, Sanjuan B, Gérard A (2009) Chemical stimulation techniques for geothermal wells: experiments on the three-well EGS system at Soultz-sous-Forêts, France. Geothermics 38:349–359

    Article  Google Scholar 

  • Potyondy DO, Cundall PA (2004) A bonded-particle model for rock. Int J Rock Mech Min Sci 41:1329–1364

    Article  Google Scholar 

  • Pruess K (2006) Enhanced geothermal systems (EGS) using CO2 as working fluid — a novel approach for generating renewable energy with simultaneous sequestration of carbon. Geothermics 35:351–367

    Article  Google Scholar 

  • Regenspurg S, Alawi M, Blöcher G, Börger M, Kranz S, Norden B, Saadat A, Scheytt T, Virchow L, Vieth-Hillebrand A (2018) Impact of drilling mud on chemistry and microbiology of an upper Triassic groundwater after drilling and testing an exploration well for aquifer thermal energy storage in Berlin (Germany). Environ Earth Sci 77:516

    Article  Google Scholar 

  • Rutqvist J (2011) Status of the TOUGH-FLAC simulator and recent applications related to coupled fluid flow and crustal deformations. Comput Geosci 37:739–750

    Article  Google Scholar 

  • Rutqvist J, Dobson PF, Garcia J, Hartline C, Jeanne P, Oldenburg CM, Vasco DW, Walters M (2015) The northwest geysers EGS demonstration project, California: pre-stimulation modeling and interpretation of the stimulation. Math Geosci 47:3–2

    Article  Google Scholar 

  • Scheck-Wenderoth M, Cacace M, Maystrenko Y, Cherubini Y, Noack V, Kaiser B-O, Sippel J, Lewerenz B (2014) Models of heat transport in the central European Basin system: effective mechanisms at different scales. Mar Pet Geol 55:315–331

    Article  Google Scholar 

  • Shen B, & Stephansson O, (1994) Modification of the G-criterion for crack propagation subjected to compression. Eng Fract Mech, 47(2), 177–189

    Google Scholar 

  • Shen B (2008) Borehole breakout and in situ stresses. SHIRMS 2008 1:407–418

    Google Scholar 

  • Shen B, Stephansson O, Rinne M (2002) Simulation of borehole breakouts using FRACOD2D. Oil Gas Sci Technol – Rev, IFP 57(5):579–590

    Article  Google Scholar 

  • Stephansson O, Zang A (2012) ISRM suggested methods for rock stress estimation – part 5: establishing a model for the in-situ stress at a given site. Rock Mech Rock Eng 45:955–969

    Article  Google Scholar 

  • Stephansson O, Shen B, Rinne M, Backers T, Koide K, Nakama S, Ishida T, Moro Y, Amemiya K (2003) Geomechanical evaluation and analysis of research shafts and galleries in MIU Project, Japan. In: Proceedings 1st international symposium on underground environment, March, Kyoto, Japan, pp 39–49

    Google Scholar 

  • Tsang YW (1984) The effect of tortuosity on fluid-flow through a single fracture. Water Resour Res 20(9):1209–1215

    Article  Google Scholar 

  • Valley B, Evans KF (2007) Stress state at Soultz-sous-Forêts to 5 km depth from wellbore failure and hydraulic observations. In: Proceedings, 32nd workshop on geothermal reservoir engineering, pp 17481–17469

    Google Scholar 

  • Van der Hoeven M (2013) World energy outlook 2013. Tokyo, International Energy Agency

    Google Scholar 

  • Vernik L, Zoback MD, Brudy M (1992) Methodology and application of the wellbore breakout analysis in estimating the maximum horizontal stress magnitude in the KTB pilot hole. Sci Drill 3:161–169

    Google Scholar 

  • Warpinski NR, Moschovidis ZA, Parker CD, Abou-Sayed IS (1994) Comparison study of hydraulic fracturing models - test case: GRI staged field experiment no. 3. SPE Prod Facil 1994:7–16

    Article  Google Scholar 

  • Watanabe N, Wang W, McDermott C, Taniguchi T, Kolditz O (2010) Uncertainty analysis of thermo-hydro-mechanical coupled processes in heterogeneous porous media. Comput Mech 45(4):263–280

    Article  Google Scholar 

  • Watanabe N, Wang W, Taron J, Görke UJ, Kolditz O (2012) Lower dimensional interface elements with local enrichment: application to coupled hydro-mechanical problems in discretely fractured porous media. Int J Numer Methods Eng 90(8):1010–1034

    Google Scholar 

  • Xu RN, Zhang L, Zhang FZ, Jiang PX (2015) A review on heat transfer and energy conversion in the enhanced geothermal systems with water/CO2 as working fluid. Int J Energy Res 39(13):1722–1741

    Article  Google Scholar 

  • Yew CH (1997) Mechanics of hydraulic fracturing. Gulf Professional Publishing

    Google Scholar 

  • Yoon JS, Zang A, Stephansson O (2014) Numerical investigation on optimized stimulation of intact and naturally fractured deep geothermal reservoirs using hydro-mechanical coupled discrete particles joints model. Geothermics 52:165–184

    Article  Google Scholar 

  • Yoon JS, Zimmermann G, Zang A (2015a) Discrete element of cyclic rate fluid injection at multiple locations in naturally fractured reservoirs. Int J Rock Mech Min Sci 74:15–23

    Article  Google Scholar 

  • Yoon JS, Zimmermann G, Zang A (2015b) Numerical investigation on stress shadowing in fluid injection-induced fracture propagation in naturally fractured geothermal reservoirs. Rock Mech Rock Eng 48:1439–1454

    Article  Google Scholar 

  • Yoon JS, Zimmermann G, Zang A, Stephansson O (2015c) Discrete element modeling of fluid injection-induced seismicity and activation of nearby fault. Can Geotech J 52:1457–1465

    Article  Google Scholar 

  • Zang A, Stephansson O (2009) Stress field of the Earth’s crust. Springer, Dordrecht

    Google Scholar 

  • Zang A, Yoon JS, Stephansson O, Heidbach O (2013) Fatigue hydraulic fracturing by cyclic reservoir treatment enhances permeability and reduces induced seismicity. Geophys J Int 195(2):1282–1287

    Article  Google Scholar 

  • Zang A, Stephansson O, Zimmermann G (2017) Keynote: fatigue hydraulic fracturing. Procedia Eng 191:1126–1134

    Article  Google Scholar 

  • Zang A, Zimmermann G, Hofmann H, Stephansson O, Min KB, Kim KY (2018) How to reduce fluid-injection-induced seismicity. Rock Mech Rock Eng. https://doi.org/10.1007/s00603-018-1467-4

  • Zhang Z, Nemcik J, Qiao Q, Geng X (2015) A model for water flow through rock fractures based on friction factor. Rock Mech Rock Eng 48(2):559–571

    Article  Google Scholar 

  • Zhao ZH (2014) On the heat transfer coefficient between rock fracture walls and flowing fluid. Comput Geotech 59:105–111

    Article  Google Scholar 

  • Zimmermann G, Reinicke A (2010) Hydraulic stimulation of a deep sandstone reservoir to develop an enhanced geothermal system: laboratory and field experiments. Geothermics 39:70–77

    Article  Google Scholar 

  • Zimmermann G, Moeck I, Blöcher G (2010) Cyclic waterfrac stimulation to develop an enhanced geothermal system (EGS) – conceptual design and experimental results. Geothermics 39:59–69

    Article  Google Scholar 

  • Zoback MD, Peska P (1995) In-situ stress and rock strength in the GBRN/DOE pathfinder well South Eugene Island, Gulf of Mexico. J Pet Technol 1995:582–585

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the New and Renewable Energy Technology Development Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) through a grant funded by the Korean Government’s Ministry of Trade, Industry & Energy (No. 20123010110010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki-Bok Min .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xie, L., Bai, B., Shen, B., Zimmermann, G., Min, KB. (2020). Applications for Deep Geothermal Engineering. In: Shen, B., Stephansson, O., Rinne, M. (eds) Modelling Rock Fracturing Processes. Springer, Cham. https://doi.org/10.1007/978-3-030-35525-8_13

Download citation

Publish with us

Policies and ethics