Skip to main content
Log in

Phylogenetic diversity of dimethylsulfoniopropionatedependent demethylase gene dmdA in distantly related bacteria isolated from Arctic and Antarctic marine environments

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

Dimethylsulfoniopropionate (DMSP) is mainly produced by marine phytoplankton as an osmolyte, antioxidant, predator deterrent, or cryoprotectant. DMSP is also an important carbon and sulfur source for marine bacteria. Bacteria may metabolize DMSP via the demethylation pathway involving the DMSP demethylase gene (dmdA) or the cleavage pathway involving several different DMSP lyase genes. Most DMSP released into seawater is degraded by bacteria via demethylation. To test a hypothesis that the high gene frequency of dmdA among major marine taxa results in part from horizontal gene transfer (HGT) events, a total of thirty-one bacterial strains were isolated from Arctic Kongsfjorden seawater in this study. Analysis of 16S rRNA gene sequences showed that, except for strains BSw22118, BSw22131 and BSw22132 belonging to the genera Colwellia, Pseudomonas and Glaciecola, respectively, all bacteria fell into the genus Pseudoalteromonas. DmdA genes were detected in five distantly related bacterial strains, including four Arctic strains (Pseudoalteromonas sp. BSw22112, Colwellia sp. BSw22118, Pseudomonas sp. BSw22131 and Glaciecola sp. BSw22132) and one Antarctic strain (Roseicitreum antarcticum ZS2-28). Their dmdA genes showed significant similarities (97.7%–98.3%) to that of Ruegeria pomeroyi DSS-3, which was originally isolated from temperate coastal seawater. In addition, the sequence of the gene transfer agent (GTA) capsid protein gene (g5) detected in Antarctic strain ZS2-28 exhibited a genetically closely related to that of Ruegeria pomeroyi DSS-3. Among the five tested strains, only Pseudomonas sp. BSw22131 could grow using DMSP as the sole carbon source. The results of this study support the hypothesis of HGT for dmdA among taxonomically heterogeneous bacterioplankton, and suggest a wide distribution of functional gene (i.e., dmdA) in global marine environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreae M O. 1990. Ocean-atmosphere interactions in the global biogeochemical sulfur cycle. Marine Chemistry, 30: 1–29, doi: 10.1016/0304-4203(90)90059-L

    Article  Google Scholar 

  • Bürgermeister S, Georgii H W, Zimmermann R L, et al. 1990. On the biogenic origin of dimethylsulfide: relation between chlorophyll, ATP, organismic DMSP, phytoplankton species, and DMS distribution in Atlantic surface water and atmosphere. Journal of Geophysical Research: Atmosphere, 95(D12): 20607–20615, doi: 10.1029/JD095iD12p20607

    Article  Google Scholar 

  • Biers E J, Wang Kui, Pennington C, et al. 2008. Occurrence and expression of gene transfer agent genes in marine bacterioplank-ton. Applied and Environmental Microbiology, 74(10): 2933–2939, doi: 10.1128/AEM.02129-07

    Article  Google Scholar 

  • Bullock H A, Luo Haiwei, Whitman W B. 2017. Evolution of dimethyl-sulfoniopropionate metabolism in marine phytoplankton and bacteria. Frontiers in Microbiology, 8: 637, doi: 10.3389/ fmicb.2017.00637

    Google Scholar 

  • Charlson R J, Lovelock J E, Andreae M O, et al. 1987. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature, 326(6114): 655–661, doi: 10.1038/326655a0

    Google Scholar 

  • Cui Yingshun, Suzuki S, Omori Y, et al. 2015. Abundance and distribution of dimethylsulfoniopropionate degradation genes and the corresponding bacterial community structure at dimethyl sulfide hot spots in the tropical and subtropical Pacific Ocean. Applied and Environmental Microbiology, 81(12): 4184–4194, doi: 10.1128/AEM.03873-14

    Article  Google Scholar 

  • Curson A R J, Todd J D, Sullivan M J, et al. 2011. Catabolism of dimethylsulphoniopropionate: microorganisms, enzymes and genes. Nature Reviews Microbiology, 9(12): 849–859, doi: 10.1038/nrmicro2653

    Article  Google Scholar 

  • Fu Yunyun, MacLeod D M, Rivkin R B, et al. 2010. High diversity of Rhodobacterales in the subarctic North Atlantic Ocean and gene transfer agent protein expression in isolated strains. Aquatic Microbial Ecology, 59(3): 283–293, doi: 10.3354/ ame01398

    Article  Google Scholar 

  • Fuhrman J A, Lee S H, Masuchi Y, et al. 1994. Characterization of marine prokaryotic communities via DNA and RNA. Microbial Ecology, 28(2): 133–145, doi: 10.1007/BF00166801

    Article  Google Scholar 

  • Gonzalez J M, Covert J S, Whitman W B, et al. 2003. Silicibacter pomeroyi sp. nov. and Roseovarius nubinhibens sp. nov., dimethylsulfoniopropionate-demethylating bacteria from marine environments. International Journal of Systematic and Evolutionary Microbiology, 53(5): 1261–1269, doi: 10.1099/ ijs.0.02491-0

    Article  Google Scholar 

  • Gonzalez J M, Kiene R P, Moran M A. 1999. Transformation of sulfur compounds by an abundant lineage of marine bacteria in the a-subclass of the class Proteobacteria. Applied and Environmental Microbiology, 65(9): 3810–3819

    Google Scholar 

  • Guillard R R L, Ryther J H. 1962. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Canadian Journal of Microbiology, 8(2): 229–239, doi: 10.1139/m62-029

    Article  Google Scholar 

  • Herlemann D P R, Woelk J, Labrenz M, et al. 2014. Diversity and abundance of “Pelagibacterales” (SAR11) in the Baltic Sea salinity gradient. Systematic and Applied Microbiology, 37(8): 601–604, doi: 10.1016/j.syapm.2014.09.002

    Article  Google Scholar 

  • Hollibaugh J T, Bano N, Ducklow H W. 2002. Widespread distribution in polar oceans of a 16S rRNA gene sequence with affinity to Nitrosospira-like ammonia-oxidizing bacteria. Applied and Environmental Microbiology, 68(3): 1478–1484, doi: 10.1128/ AEM.68.3.1478-1484.2002

    Article  Google Scholar 

  • Howard E C, Henriksen J R, Buchan A, et al. 2006. Bacterial taxa that limit sulfur flux from the ocean. Science, 314(5799): 649–652, doi: 10.1126/science.ll30657

    Google Scholar 

  • Howard E C, Sun Shulei, Biers E J, et al. 2008. Abundant and diverse bacteria involved in DMSP degradation in marine surface waters. Environmental Microbiology, 10(9): 2397–2410, doi: 10.1111/J.1462-2920.2008.01665.X

    Article  Google Scholar 

  • Howard E C, Sun Shulei, Reisch C R, et al. 2011. Changes in dimethyl-sulfoniopropionate demethylase gene assemblages in response to an induced phytoplankton bloom. Applied and Environmental Microbiology, 77(2): 524–531, doi: 10.1128/ AEM.01457-10

    Article  Google Scholar 

  • Huber T, Faulkner G, Hugenholtz P. 2004. Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics, 20(14): 2317–2319, doi: 10.1093/bioinformat-ics/bth226

    Article  Google Scholar 

  • Johnston A W B, Green R T, Todd J D. 2016. Enzymatic breakage of dimethylsulfoniopropionate—a signature molecule for life at sea. Current Opinion in Chemical Biology, 31: 58–65, doi: 10.1016/j.cbpa.2016.01.011

    Article  Google Scholar 

  • Johnston A W B, Todd J D, Sun Lei, et al. 2008. Molecular diversity of bacterial production of the climate-changing gas, dimethyl sulphide, a molecule that impinges on local and global symbioses. Journal of Experimental Botany, 59(5): 1059–1067, doi: 10.1093/jxb/erm264

    Article  Google Scholar 

  • Karsten U, Kiick K, Vogt C, et al. 1996. Dimethylsulfoniopropionate production in phototrophic organisms and its physiological functions as a cryoprotectant. In: Kiene R P, Visscher P T, Keller M D, et al., eds. Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds. New York: Plenum Press, 143–153

    Chapter  Google Scholar 

  • Keller M D. 1989. Dimethyl sulfide production and marine phytoplankton: the importance of species composition and cell size. Biological Oceanography, 6(5-6): 375–382, doi: 10.1080/01965581. 1988.10749540

    Google Scholar 

  • Kiene R P. 1990. Dimethyl sulfide production from dimethylsulfoniopropionate in coastal seawater samples and bacterial cultures. Applied and Environmental Microbiology, 56(11): 3292–3297

    Google Scholar 

  • Kiene R P, Linn L J. 2000. Distribution and turnover of dissolved DMSP and its relationship with bacterial production and dimethyl-sulfide in the Gulf of Mexico. Limnology and Oceanography, 45(4): 849–861, doi: 10.4319/lo.2000.45.4.0849

    Article  Google Scholar 

  • Kiene R P, Linn L J, Bruton J A. 2000. New and important roles for DMSP in marine microbial communities. Journal of Sea Research, 43(3-4): 209–224, doi: 10.1016/S1385-1101(00)00023-X

    Article  Google Scholar 

  • Kiene R P, Linn L J, J, et al. 1999. Dimethylsulfoniopropionate and methanethiol are important precursors of methionine and protein-sulfur in marine bacterioplankton. Applied and Environmental Microbiology, 65(10): 4549–4558

    Google Scholar 

  • Kirst G O, Thiel C, Wolff H, et al. 1990. Dimethylsulfoniopropionate (DMSP) in icealgae and its possible biological role. Marine Chemistry, 35(1-4): 381–388, doi: 10.1016/S0304-4203 (09)90030-5

    Article  Google Scholar 

  • Lang A S, Beatty J T. 2007. Importance of widespread gene transfer agent genes in a-proteobacteria. Trends in Microbiology, 15(2): 54–62, doi: 10.1016/j.tim.2006.12.001

    Article  Google Scholar 

  • Lang A S, Zhaxybayeva O, Beatty J T. 2012. Gene transfer agents: phage-like elements of genetic exchange. Nature Reviews Microbiology, 10(7): 472–482, doi: 10.1038/nrmicro2802

    Article  Google Scholar 

  • Marrs B. 1974. Genetic recombination in Rhodopseudomonas capsulata. Proceedings of the National Academy of Sciences of the United States of America, 71(3): 971–973, doi: 10.1073/pnas. 71.3.971

    Article  Google Scholar 

  • McDaniel L D, Young E, Delaney J, et al. 2010. High frequency of horizontal gene transfer in the oceans. Science, 330(6000): 50, doi: 10.1126/science.ll92243

    Article  Google Scholar 

  • Moran M A, Reisch C R, Kiene R P, et al. 2012. Genomic insights into bacterial DMSP transformations. Annual Review of Marine Science, 4: 523–542, doi: 10.1146/annurev-marine-120710-100827

    Article  Google Scholar 

  • Pawlowski J, Fahrni J, Lecroq B, et al. 2007. Bipolar gene flow in deep-sea benthic foraminifera. Molecular Ecology, 16(19): 4089–4096, doi: 10.1111/J.1365-294X.2007.03465.X

    Article  Google Scholar 

  • Pommier T, Pinhassi J, Hagstrom A. 2005. Biogeographic analysis of ribosomal RNA clusters from marine bacterioplankton. Aquatic Microbial Ecology, 41(1): 79–89, doi: 10.3354/ame041079

    Article  Google Scholar 

  • Reisch C R, Moran M A, Whitman W B. 2008. Dimethylsulfoniopropi-onate-dependent demethylase (DmdA) from Pelagibacter ubi-que and Silicibacter pomeroyi. Journal of Bacteriology, 190(24): 8018–8024, doi: 10.1128/JB.00770-08

    Article  Google Scholar 

  • Reisch C R, Stoudemayer M J, Varaljay V A, et al. 2011. Novel pathway for assimilation of dimethylsulphoniopropionate widespread in marine bacteria. Nature, 473(7346): 208–211, doi: 10.1038/naturel0078

    Article  Google Scholar 

  • Ripp S, Miller R V. 1995. Effects of suspended particulates on the frequency of transduction among Pseudomonas aeruginosa in a freshwater environment. Applied and Environmental Microbiology, 61(4): 1214–1219

    Google Scholar 

  • Salgado P, Kiene R, Wiebe W, et al. 2014. Salinity as a regulator of DMSP degradation in Ruegeria pomeroyi DSS-3. Journal of Microbiology, 52(11): 948–954, doi: 10.1007/sl2275-014-4409-1

    Article  Google Scholar 

  • Sambrook J, Russell D W. 2001. Molecular Cloning: A Laboratory Manual. New York: Cold Spring Harbor Laboratory Press

    Google Scholar 

  • Schwartz S E, Andreae M O. 1996. Uncertainty in climate change caused by aerosols. Science, 272(5265). 1121. doi: 10.1126/sci-ence.272.5265.1121

    Google Scholar 

  • Shaw G E. 1983. Bio-controlled thermostasis involving the sulfur cycle. Climatic Change, 5(3): 297–303, doi: 10.1007/BF02423524

    Article  Google Scholar 

  • Solioz M, Marrs B. 1977. The gene transfer agent of Rhodopseudomonas capsulata: purification and characterization of its nucleic acid. Archives of Biochemistry and Biophysics, 181(1): 300–307, doi: 10.1016/0003-9861(77)90508-2

    Article  Google Scholar 

  • Sun Jing, Todd J D, Thrash J C, et al. 2016. The abundant marine bacterium Pelagibacter simultaneously catabolizes dimethylsulfoniopropionate to the gases dimethyl sulfide and methanethiol. Nature Microbiology, 1(8). 16065. doi: 10.1038/nmicrobiol.2016.65

    Article  Google Scholar 

  • Sunda W, Kieber D J, Kiene R P, et al. 2002. An antioxidant function for DMSP and DMS in marine algae. Nature, 418(6895): 317–320, doi: 10.1038/nature00851

    Article  Google Scholar 

  • Tamura K, Peterson D, Peterson N, et al. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10): 2731–2739, doi: 10.1093/mol-bev/msrl21

    Article  Google Scholar 

  • Thompson J D, Higgins D G, Gibson T J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22): 4673–4680, doi: 10.1093/nar/22.22.4673

    Article  Google Scholar 

  • Turner S M, Nightingale P D, Broadgate W, et al. 1995. The distribution of dimethyl sulphide and dimethylsulphoniopropionate in Antarctic waters and sea ice. Deep Sea Research Part II: Topical Studies in Oceanography, 42(4-5): 1059–1080, doi: 10.1016/ 0967-0645(95)00066-y

    Article  Google Scholar 

  • Vettori C, Stotzky G, Yoder M, et al. 1999. Interaction between bacteriophage PBS1 and clay minerals and transduction of Bacillus subtilis by clay-phage complexes. Environmental Microbiology, 1(4): 347–355, doi: 10.1046/J.1462-2920.1999.00044.X

    Article  Google Scholar 

  • Visscher P T, Diaz M R, Taylor B F. 1992. Enumeration of bacteria which cleave or demethylate dimethylsulfoniopropionate in the Caribbean Sea. Marine Ecology Progress Series, 89: 293–296, doi: 10.3354/meps089293

    Article  Google Scholar 

  • Weinbauer M G. 2004. Ecology of prokaryotic viruses. FEMS Microbiology Reviews, 28(2): 127–181, doi: 10.1016/j.femsre.2003. 08.001

    Article  Google Scholar 

  • Wolfe G V, Steinke M, Kirst G O.1997. Grazing-activated chemical defence in a unicellular marine alga. Nature, 387(6636): 894–897, doi: 10.1038/43168

    Article  Google Scholar 

  • Yen H C, Hu N T, Marrs B L. 1979. Characterization of the gene transfer agent made by an overproducer mutant of Rhodopseudomo-nas capsulata. Journal of Molecular Biology, 131(2): 157–168, doi: 10.1016/0022-2836(79)90071-8

    Article  Google Scholar 

  • Yu Yong, Yan Shulin, Li Huirong, et al. 2011. Roseicitreum antarctic-um gen. nov., sp. nov., an aerobic bacteriochlorophyll a-con-taining alphaproteobacterium isolated from Antarctic sandy in-tertidal sediment. International Journal of Systematic and Evolutionary Microbiology, 61(9): 2173–2179, doi: 10.1099/ijs.0.024885-0

    Article  Google Scholar 

  • Zeng Yinxin, Liu Wenqi, Li Huirong, et al. 2007. Effect of restriction endonucleases on assessment of biodiversity of cultivable polar marine planktonic bacteria by amplified ribosomal DNA restriction analysis. Extremophiles, 11(5): 685–692, doi: 10.1007/S00792-007-0086-X

    Article  Google Scholar 

  • Zeng Yinxin, Qiao Zongyun, Yu Yong, et al. 2016. Diversity of bacterial dimethylsulfoniopropionate degradation genes in surface seawater of Arctic Kongsfjorden. Scientific Reports, 6. 33031. doi: 10.1038/srep33031

    Article  Google Scholar 

  • Zhao Yanlin, Wang Kui, Budinoff C, et al. 2008. Gene transfer agent (GTA) genes reveal diverse and dynamic Roseobacter and Rhodobacter populations in the Chesapeake bay. The ISME Journal, 3(3): 364–373, doi: 10.1038/ismej.2008.115

    Article  Google Scholar 

Download references

Acknowledgements

I appreciate the assistance of the Chinese Arctic and Antarctic Administration (CAA) who organized the Chinese Arctic Yellow River Station Expedition in 2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinxin Zeng.

Additional information

Foundation item: The National Natural Science Foundation of China under contract No. 41476171; the Chinese Polar Environment Comprehensive Investigation and Assessment Program under contract No. CHINARE04-01.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Y. Phylogenetic diversity of dimethylsulfoniopropionatedependent demethylase gene dmdA in distantly related bacteria isolated from Arctic and Antarctic marine environments. Acta Oceanol. Sin. 38, 64–71 (2019). https://doi.org/10.1007/s13131-019-1393-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-019-1393-7

Key words

Navigation