Skip to main content
Log in

Substitution of His260 residue alters the thermostability of Pseudoalteromonas carrageenovora arylsulfatase

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

This study aimed to improve the thermostability of arylsulfatase from Pseudoalteromonas carrageenovora. A library of P. carrageenovora arylsulfatase mutants was constructed by introducing random mutagenesis using error-prone PCR. After screening, two mutants of H260L and D84A/H260L showed enhanced thermal stability than the wild-type predecessor (WT). Site-directed mutagenesis demonstrated that only amino acid residue at Position 260 plays an important role in the thermostability of P. carrageenovora arylsulfatase. Thermal inactivation analysis showed that the half-life (t1/2) values at 55°C for H260L, H260I, H260Q, H260F and H260R were 40.6, 48.4, 30.9, 29.1 and 34.5 min, respectively, while that of WT was 9.1 min. Structure modeling demonstrated that the additional hydrogen bonds and/or optimization of surface charge-charge interactions could be responsible for the increased thermostability imparted by H260L, H260I, H260Q, H260F and H260R.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akbulut N, Tuzlakoğlu Öztürk M, Pijning T, et al. 2013. Improved activity and thermostability of Bacillus pumilus lipase by directed evolution. Journal of Biotechnology, 164(1): 123–129, doi: 10.1016/j.jbiotec.2012.12.016

    Article  Google Scholar 

  • Arnott S, Fulmer A, Scott W E, et al. 1974. The agarose double helix and its function in agarosegel structure. Journal of Molecular Biology, 90(2): 269–284, doi: 10.1016/0022-2836(74)90372-6

    Article  Google Scholar 

  • Barbeyron T, Potin P, Richard C, et al. 1995. Arylsulphatase from Alteromonas carrageenovora. Microbiology, 141(11): 2897–2904, doi: 10.1099/13500872-141-11-2897

    Article  Google Scholar 

  • Ben Mabrouk S, Ayadi D Z, Ben Hlima H, et al. 2013. Thermostability improvement of maltogenic amylase MAUS149 by error prone PCR. Journal of Biotechnology, 168(4): 601–606, doi: 10.1016/j.jbiotec.2013.08.026

    Article  Google Scholar 

  • Blum S C, Lehmann J, Solomon D, et al. 2013. Sulfur forms in organic substrates affecting S mineralization in soil. Geoderma, 200–201: 156–164

    Article  Google Scholar 

  • Boersma Y L, Dröge M J, Quax W J. 2007. Selection strategies for improved biocatalysts. The FEBS Journal, 274(9): 2181–2195, doi: 10.1111/ejb.2007.274.issue-9

    Article  Google Scholar 

  • Bradford M M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2): 248–254

    Article  Google Scholar 

  • Cregut M, Rondags E. 2013. New insights in agar biorefinery with arylsulphatase activities. Process Biochemistry, 48(12): 1861–1871, doi: 10.1016/j.procbio.2013.09.020

    Article  Google Scholar 

  • Duckworth M, Yaphe W. 1971. The structure of agar: Part I. Fraction-ation of a complex mixture of polysaccharides. Carbohydrate Research, 16(1): 189–197, doi: 10.1016/S0008-6215(00)86113-3

    Article  Google Scholar 

  • Gao Chao, Jin Min, Yi Zhiwei, et al. 2015. Characterization of a recombinant thermostable arylsulfatase from deep-sea bacterium Flammeovirga pacifica. Journal of Microbiology and Biotechnology, 25(11): 1894–1901, doi: 10.4014/jmb.1504.04028

    Article  Google Scholar 

  • Guiseley K B. 1970. The relationship between methoxyl content and gelling temperature of agarose. Carbohydrate Research, 13(2): 247–256, doi: 10.1016/S0008-6215(00)80831-9

    Article  Google Scholar 

  • Guo Jing, Rao Zhiming, Yang Taowei, et al. 2015. Enhancement of the thermostability of Streptomyces kathirae SC-1 tyrosinase by rational design and empirical mutation. Enzyme and Microbial Technology, 77: 54–60, doi: 10.1016/j.enzmictec.2015.06.002

    Article  Google Scholar 

  • Henderson M J, Milazzo F H. 1979. Arylsulfatase in Salmonella typh-imurium: detection and influence of carbon source and tyram-ine on its synthesis. Journal of Bacteriology, 139(1): 80–87

    Google Scholar 

  • Izumi K. 1970. A new method for fractionation of agar. Agricultural and Biological Chemistry, 34(1): 1739–1740

    Article  Google Scholar 

  • Kim D E, Kim K H, Bae Y J, et al. 2005. Purification and characterization of the recombinant arylsulfatase cloned from Pseudoal-teromonas carrageenovora. Protein Expression and Purification, 39(1): 107–115, doi: 10.1016/j.pep.2004.09.007

    Article  Google Scholar 

  • Kim J H, Byun D S, Godber J S, et al. 2004. Purification and characterization of arylsulfatase from Sphingomonas sp. AS6330. Applied Microbiology and Biotechnology, 63(5): 553–559, doi: 10.1007/s00253-003-1463-8

    Article  Google Scholar 

  • Kumar A, Singh S. 2013. Directed evolution: tailoring biocatalysts for industrial applications. Critical Reviews in Biotechnology, 33(4): 365–378, doi: 10.3109/07388551.2012.716810

    Article  Google Scholar 

  • Laskowski R A, MacArthur M W, Moss D S, et al. 1993. PROCHECK: a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2): 283–291, doi: 10.1107/S0021889892009944

    Article  Google Scholar 

  • Lee D G, Shin J G, Jeon M J, et al. 2013. Heterologous expression and characterization of a recombinant thermophilic arylsulfatase from Thermotoga maritima. Biotechnology and Bioprocess Engineering, 18(5): 897–902, doi: 10.1007/s12257-013-0094-x

    Article  Google Scholar 

  • Letunic I, Doerks T, Bork P. 2015. SMART: recent updates, new developments and status in 2015. Nucleic Acids Research, 43(D1): D257–D260, doi: 10.1093/nar/gku949

    Article  Google Scholar 

  • Lim J M, Jang Y H, Kim H R, et al. 2004. Overexpression of arylsulfatase in E. coli and its application to desulfatation of agar. Journal of Microbiology and Biotechnology, 14(4): 777–782

    Google Scholar 

  • Lin Ling, Fu Chenggen, Huang Weiqian. 2016. Improving the activity of the endoglucanase, Cel8M from Escherichia coli by error-prone PCR. Enzyme and Microbial Technology, 86: 52–58, doi: 10.1016/j.enzmictec.2016.01.011

    Article  Google Scholar 

  • Marino T, Russo N, Toscano M. 2013. Catalytic mechanism of the arylsulfatase promiscuous enzyme from Pseudomonas aeru-ginosa. Chemistry-A European Journal, 19(6): 2185–2192, doi: 10.1002/chem.v19.6

    Article  Google Scholar 

  • Miech C, Dierks T, Selmer T, et al. 1998. Arylsulfatase from Klebsiella pneumoniae carries a formylglycine generated from a serine. The Journal of Biological Chemistry, 273(9): 4835–4837, doi: 10.1074/jbc.273.9.4835

    Article  Google Scholar 

  • Mohammadi M, Sepehrizadeh Z, Ebrahim-Habibi A, et al. 2016. Enhancing activity and thermostability of lipase A from Serratia marcescens by site-directed mutagenesis. Enzyme and Microbial Technology, 93–94: 18–28

    Article  Google Scholar 

  • Murooka Y, Yim M H, Harada T. 1980. Formation and purification of Serratia marcescens arylsulfatase. Applied and Environmental Microbiology, 39(4): 812–817

    Google Scholar 

  • Niu Rungui, Jing Hua, Chen Zhao, et al. 2012. Differentiating malignant colorectal tumor patients from benign colorectal tumor patients by assaying morning urinary arylsulfatase activity. Asia-Pacific Journal of Clinical Oncology, 8(4): 362–367, doi: 10.1111/ajco.2012.8.issue-4

    Article  Google Scholar 

  • Okamura H, Yamada T, Murooka Y, et al. 2008. Purification and properties of arylsulfatase of Klebsiella aerogenes identity of the enzymes formed by non-repressed and de-repressed synthesis. Agricultural and Biological Chemistry, 40(10): 2071–2076

    Google Scholar 

  • Schweiker K L, Makhatadze G I. 2009. Protein stabilization by the rational design of surface charge-charge interactions. In: Shriver J, ed. Protein Structure, Stability, and Interactions. New York: Humana Press, 490: 261–283

    Chapter  Google Scholar 

  • Schweiker K L, Zarrine-Afsar A, Davidson A R, et al. 2007. Computational design of the Fyn SH3 domain with increased stability through optimization of surface charge-charge interactions. Protein Science, 16(12): 2694–2702, doi: 10.1110/(ISSN)1469-896X

    Article  Google Scholar 

  • Stressler T, Leisibach D, Lutz-Wahl S, et al. 2016a. Homologous expression and biochemical characterization of the arylsulfatase from Kluyveromyces lactis and its relevance in milk processing. Applied Microbiology and Biotechnology, 100(12): 5401–5014, doi: 10.1007/s00253-016-7366-2

    Google Scholar 

  • Stressler T, Seitl I, Kuhn A, et al. 2016b. Detection, production, and application of microbial arylsulfatases. Applied Microbiology and Biotechnology, 100(21): 9053–9067, doi: 10.1007/s00253-016-7838-4

    Article  Google Scholar 

  • Tu Tao, Luo Huiying, Meng Kun, et al. 2015. Improvement in thermo-stability of an Achaetomium sp. strain Xz8 endopolygalactur-onase via the optimization of charge-charge interactions. Applied and Environmental Microbiology, 81(19): 6938–6944, doi: 10.1128/AEM.01363-15

    Article  Google Scholar 

  • Vieira D S, Degrève L. 2009. An insight into the thermostability of a pair of xylanases: the role of hydrogen bonds. Molecular Physics, 107(1): 59–69, doi: 10.1080/00268970902717959

    Article  Google Scholar 

  • Vogt G, Woell S, Argos P. 1997. Protein thermal stability, hydrogen bonds, and ion pairs. Journal of Molecular Biology, 269(4): 631–643, doi: 10.1006/jmbi.1997.1042

    Article  Google Scholar 

  • Wang Xueyan, Duan Delin, Xu Jiachao, et al. 2015. Characterization of a novel alkaline arylsulfatase from Marinomonas sp. FW-1 and its application in the desulfation of red seaweed agar. Journal of Industrial Microbiology & Biotechnology, 42(10): 1353–1362, doi: 10.1007/s10295-015-1625-6

    Article  Google Scholar 

  • Webb B, Webb B, Marti-Renom M A, et al. 2007. Comparative protein structure modeling using Modeller. Current Protocols in Protein Science, 50(1): 2.9.1–2.9.31, doi: 10.1002/0471140864. 2007.50.issue-1

    Article  Google Scholar 

  • Zhang Lujia, Tang Xiaomang, Cui Dongbing, et al. 2014. A method to rationally increase protein stability based on the charge-charge interaction, with application to lipase LipK107. Protein Science, 23(1): 110–116, doi: 10.1002/pro.2388

    Article  Google Scholar 

  • Zhou Cheng, Xue Yanfen, Ma Yanhe. 2015. Evaluation and directed evolution for thermostability improvement of a GH 13 thermostable α-glucosidase from Thermus thermophilus TC11. BMC Biotechnology, 15: 97, doi: 10.1186/s12896-015-0197-x

    Article  Google Scholar 

  • Zhu Yanbing, Zheng Wenguang, Ni Hui, et al. 2015. Molecular cloning and characterization of a new and highly thermostable esterase from Geobacillus sp. JM6. Journal of Basic Microbiology, 55(10): 1219–1231, doi: 10.1002/jobm.v55.10

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Ni.

Additional information

Foundation item: The National Natural Science Foundation of China under contract No. 31401632; the Program for New Century Excellent Talents in Fujian Province University, China under contract No. B15139.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Yin, X., Liu, H. et al. Substitution of His260 residue alters the thermostability of Pseudoalteromonas carrageenovora arylsulfatase. Acta Oceanol. Sin. 38, 75–82 (2019). https://doi.org/10.1007/s13131-019-1356-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-019-1356-z

Key words

Navigation