Skip to main content
Log in

Phytoplankton pigment pattern in the subsurface chlorophyll maximum in the South Java coastal upwelling system, Indonesia

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

Upwelling occurs on the coast of Java between June and October, forced by local alongshore winds associated with the southeasterly monsoon. This causes variations in phytoplankton community composition in the upwelling zone compared with the surrounding offshore area. Based on pigments analysis with subsequent calculations of group contributions to total chlorophyll a (Chl a) using CHEMTAX, we studied the distribution and composition of phytoplankton assemblages in the subsurface chlorophyll maximum along the south coast of Java and the influence of upwelling. Nineteen phytoplankton pigments were identified using high-performance liquid chromatography, and CHEMTAX analysis associated these to ten major phytoplankton groups. The phytoplankton community in the coastal area influenced by upwelling was characterized by high Chl a and fucoxanthin concentrations, indicating the dominance of diatoms. In contrast, in the offshore area, the Chl a and fucoxanthin concentrations declined to very low levels and the community was dominated by haptophytes represented by 19′-Hexanoyloxyfucoxanthin. Accordingly, microphytoplankton was found to be the major size class in the coastal area influenced by upwelling, while nanophytoplankton was most abundant in the offshore area. Low concentrations of other accessory pigments indicated less contribution from dinoflagellates, prasinophytes, chlorophytes and cryptophytes. Photo-pigment indices revealed that photosynthetic carotenoids (PSCs) were the largest component of the pigment pool, exceeding the proportion of Chl a, with the average PSCTP up to 0.62. These distribution trends can mainly be explained by phytoplankton adaption strategies to upwelling and subsurface conditions by changing species composition and adjusting the pigment pool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed A, Kurian S, Gauns M, et al. 2016. Spatial variability in phytoplankton community structure along the eastern Arabian Sea during the onset of south-west monsoon. Cont Shelf Res, 119: 30–39, doi: 10.1016/j.csr.2016.03.005

    Article  Google Scholar 

  • Araujo M L V, Mendes C R B, Tavano V M, et al. 2017. Contrasting patterns of phytoplankton pigments and chemotaxonomic groups along 30°S in the subtropical South Atlantic Ocean. Deep-Sea Res Part I, 120: 112–121, doi: 10.1016/j.dsr.2016. 12.004

    Article  Google Scholar 

  • Barlow R G, Aiken J, Holligan P M, et al. 2002. Phytoplankton pigment and absorption characteristics along meridional transects in the Atlantic Ocean. Deep-Sea Res Part I, 49(4): 637–660, doi: 10.1016/S0967-0637(01)00081-4

    Article  Google Scholar 

  • Barlow R, Gibberd M J, Lamont T, et al. 2016. Chemotaxonomic phytoplankton patterns on the eastern boundary of the Atlantic Ocean. Deep-Sea Res Part I, 111: 73–78, doi: 10.1016/j.dsr.2016.02.011

    Article  Google Scholar 

  • Barlow R, Kyewalyanga M, Sessions H, et al. 2008. Phytoplankton pigments, functional types, and absorption properties in the Delagoa and Natal Bights of the Agulhas ecosystem. Estuar Coast Shelf Sci, 80(2): 201–211, doi: 10.1016/j.ecss.2008.07.022

    Article  Google Scholar 

  • Barlow R, Stuart V, Lutz V, et al. 2007. Seasonal pigment patterns of surface phytoplankton in the subtropical southern hemisphere. Deep-Sea Res Part I, 54(10): 1687–1703, doi: 10.1016/j.dsr. 2007.06.010

    Article  Google Scholar 

  • Bonachela J A, Klausmeier C A, Edwards K F, et al. 2016. The role of phytoplankton diversity in the emergent oceanic stoichiometry. Journal of Plankton Research, 38(4): 1021–1035, doi: 10.1093/plankt/fbv087

    Article  Google Scholar 

  • Brunet C, Johnsen G, Lavaud J, et al. 2011. Pigments and photoacclimation processes. In: Roy S, Llewellyn C A, Egeland E S, et al, eds. Phytoplankton Pigments: Characterization, Chemotaxonomy and Applications in Oceanography. Cambridge: Cambridge University Press, 445–471

    Chapter  Google Scholar 

  • Chai Chao, Jiang Tao, Cen Jingyi, et al. 2016. Phytoplankton pigments and functional community structure in relation to environmental factors in the Pearl River Estuary. Oceanologia, 58(3): 201–211, doi: 10.1016/j.oceano.2016.03.001

    Article  Google Scholar 

  • Falkowski P G, Raven J A. 1997. Aquatic Photosynthesis. Oxford: Blackwell

    Google Scholar 

  • Gibb S W, Barlow R G, Cummings D G, et al. 2000. Surface phytoplankton pigment distributions in the Atlantic Ocean: an assessment of basin scale variability between 50°N and 50°S. Prog Oceanogr, 45(3–4): 339–368

    Article  Google Scholar 

  • Gieskes W W C, Kraay G W, Nontji A, et al. 1988. Monsoonal alternation of a mixed and a layered structure in the phytoplankton of the euphotic zone of the Banda Sea (Indonesia): a mathematical analysis of algal pigment fingerprints. Netherlands Journal of Sea Research, 22(2): 123–137, doi: 10.1016/0077-7579(88) 90016-6

    Article  Google Scholar 

  • Grasshoff K, Kremling K, Ehrhardt M. 1999. Methods of Seawater Analysis. 3rd ed. Weinheim: Wiley-VCH, 365–371

    Book  Google Scholar 

  • Higgins H W, Wright S W, Schlüter L. 2011. Quantitative interpretation of chemotaxonomic pigment data. In: Roy S, Llewellyn C A, Egeland E S, et al, eds. Phytoplankton Pigments: Characterization, Chemotaxonomy and Applications in Oceanography. Cambridge: Cambridge University Press, 257–313

    Chapter  Google Scholar 

  • Horii T, Ueki I, Syamsudin F, et al. 2016. Intraseasonal coastal upwelling signal along the southern coast of Java observed using Indonesian tidal station data. J Geophys Res Oceans, 121(4): 2690–2708, doi: 10.1002/2015JC010886

    Article  Google Scholar 

  • Isada T, Hirawake T, Nakada S, et al. 2017. Influence of hydrography on the spatiotemporal variability of phytoplankton assemblages and primary productivity in Funka Bay and the Tsugaru Strait. Estuar Coast Shelf S, 188: 199–211, doi: 10.1016/j.ecss.2017.02.019

    Article  Google Scholar 

  • Iskandar I, Rao S A, Tozuka T. 2009. Chlorophyll—a bloom along the southern coasts of Java and Sumatra during 2006. Int J Remote Sens, 30(3): 663–671, doi: 10.1080/01431160802372309

    Article  Google Scholar 

  • Iskandar I, Sasaki H, Sasai Y, et al. 2010. A numerical investigation of eddy-induced chlorophyll bloom in the southeastern tropical Indian Ocean during Indian Ocean Dipole-2006. Ocean Dyn, 60(3): 731–742, doi: 10.1007/s10236-010-0290-6

    Article  Google Scholar 

  • Jeffrey S W, Wright S W, Zapata M. 2011. Microalgal classes and their signature pigments. In: Roy S, Llewellyn C A, Egeland E S, et al, eds. Phytoplankton Pigments: Characterization, Chemotaxonomy and Applications in Oceanography. Cambridge: Cambridge University Press, 3–77

    Chapter  Google Scholar 

  • Kuswardani R T D, Qiao Fangli. 2014. Influence of the Indonesian Throughflow on the upwelling off the east coast of South Java. Chin Sci Bull, 59(33): 4516–4523, doi: 10.1007/s11434-014-0549-2

    Article  Google Scholar 

  • Lutz V A, Sathyendranath S, Head E J H, et al. 2003. Variability in pigment composition and optical characteristics of phytoplankton in the Labrador Sea and the Central North Atlantic. Mar Ecol Progr Ser, 260: 1–18, doi: 10.3354/meps260001

    Article  Google Scholar 

  • Mackey M D, Mackey D J, Higgins H W, et al. 1996. CHEMTAX-a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Mar Ecol Progr Ser, 144: 265–283, doi: 10.3354/meps144265

    Article  Google Scholar 

  • Madhu N V, Ullas N, Ashwini R, et al. 2014. Characterization of phytoplankton pigments and functional community structure in the Gulf of Mannar and the Palk Bay using HPLC-CHEMTAX a n a l y s i s. C o n t i n e n t a l S h e l f R e s e a r c h, 80: 79–90, d o i: 10.1016/j.csr.2014.03.004

    Google Scholar 

  • Marañón E. 2015. Cell size as a key determinant of phytoplankton metabolism and community structure. Ann Rev Mar Sci, 7: 241–264, doi: 10.1146/annurev-marine-010814-015955

    Article  Google Scholar 

  • Margalef R. 1978. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol Acta, 1(4): 493–509

    Google Scholar 

  • Mendes C R B, Odebrecht C, Tavano V M, et al. 2016. Pigment-based chemotaxonomy of phytoplankton in the Patos Lagoon estuary (Brazil) and adjacent coast. Mar Biol Res, 13(1): 22–35, doi: 10.1080/17451000.2016.1189082

    Article  Google Scholar 

  • Moreno D V, Marrero J P, Morales J, et al. 2012. Phytoplankton functional community structure in Argentinian continental shelf determined by HPLC pigment signatures. Estuar Coast Shelf Sci, 100: 72–81, doi: 10.1016/j.ecss.2012.01.007

    Article  Google Scholar 

  • Paerl H W, Justić D. 2011. Primary producers: phytoplankton ecology and trophic dynamics in coastal waters. In: Wolanski E, McLusky D, eds. Treatise on Estuarine and Coastal Science. Amsterdam: Elsevier, 23–42

    Chapter  Google Scholar 

  • Porra R J, Pfündel E E, Engel N. 1997. Metabolism and function of photosynthetic pigments. In: Jeffrey S W, Mantoura R F C, Wright S W, eds. Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods. Paris: UNESCO Publishing, 85–126

    Google Scholar 

  • Ras J, Claustre H, Uitz J. 2008. Spatial variability of phytoplankton pigment distributions in the Subtropical South Pacific Ocean: comparison between in situ and predicted data. Biogeosciences, 5(2): 353–369, doi: 10.5194/bg-5-353-2008

    Article  Google Scholar 

  • Raven J A. 1998. The twelfth Tansley Lecture. Small is beautiful: the picophytoplankton. Funct Ecol, 12(4): 503–513, doi: 10.1046/j.1365-2435.1998.00233.x

    Google Scholar 

  • Reddy P R C, Salvekar P S. 2008. Phytoplankton blooms induced/sustained by cyclonic eddies during the Indian Ocean Dipole event of 1997 along the southern coasts of Java and Sumatra. Biogeosciences Discussion, 5(5): 3905–3918, doi: 10.5194/bgd-5-3905-2008

    Article  Google Scholar 

  • Sartimbul A, Nakata H, Rohadi E, et al. 2010. Variations in chlorophyll-a concentration and the impact on Sardinella lemuru catches in Bali Strait, Indonesia. Prog Oceanogr, 87(1–4): 168–174

    Article  Google Scholar 

  • Schlüter L, Henriksen P, Nielsen T G, et al. 2011. Phytoplankton composition and biomass across the southern Indian Ocean. Deep-Sea Res Part I, 158(5): 546–556

    Article  Google Scholar 

  • Susanto R D, Gordon A L, Zheng Quanan. 2001. Upwelling along the coasts of Java and Sumatra and its relation to ENSO. Geophys Res Lett, 28(8): 1599–1602, doi: 10.1029/2000GL011844

    Article  Google Scholar 

  • Susanto R D, Marra J. 2005. Effect of the 1997/98 El Niño on Chlorophyll a variability along the southern coasts of Java and Sumatra. Oceanography, 18(4): 124–127, doi: 10.5670/oceanog

    Article  Google Scholar 

  • Swan C M, Vogt M, Gruber N, et al. 2016. A global seasonal surface ocean climatology of phytoplankton types based on CHEMTAX analysis of HPLC pigments. Deep-Sea Res Part I, 109: 137–156, doi: 10.1016/j.dsr.2015.12.002

    Article  Google Scholar 

  • Trees C C, Clark D K, Bidigare R R, et al. 2000. Accessory pigments versus chlorophyll a concentrations within the euphotic zone: a ubiquitous relationship. Limnol Oceanogr, 45(5): 1130–1143, doi: 10.4319/lo.2000.45.5.1130

    Article  Google Scholar 

  • Uitz J, Claustre H, Morel A, et al. 2006. Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll. J Geophys Res, 111(C8): C08005, doi: 10.1029/2005JC003207

    Google Scholar 

  • Veldhuis M H W, Kraay G W. 2004. Phytoplankton in the subtropical Atlantic Ocean: towards a better assessment of biomass and composition. Deep-Sea Res Part I, 51(4): 507–530, doi: 10.1016/j.dsr.2003.12.002

    Article  Google Scholar 

  • Vidussi F, Claustre H, Manca B B, et al. 2001. Phytoplankton pigment distribution in relation to upper thermocline circulation in the eastern Mediterranean Sea during winter. J Geophys Res, 106(C9): 19939–19956, doi: 10.1029/1999JC000308

    Google Scholar 

  • Wang Yu, Kang Jianhua, Ye Youyin, et al. 2016. Phytoplankton community and environmental correlates in a coastal upwelling zone along western Taiwan Strait. J Mar Syst, 154: 252–263, doi: 10.1016/j.jmarsys.2015.10.015

    Article  Google Scholar 

  • Wright S W, Ishikawa A, Marchant H J, et al. 2009. Composition and significance of picophytoplankton in Antarctic waters. Polar Biol, 32(5): 797–808, doi: 10.1007/s00300-009-0582-9

    Article  Google Scholar 

  • Wright S W, Jeffrey S W. 2006. Pigment markers for phytoplankton production. In: Volkman J K, ed. Marine Organic Matter: Biomarkers, Isotopes and DNA. Berlin: Springer, 71–104

    Chapter  Google Scholar 

  • Wyrtki K. 1962. The upwelling in the region between Java and Australia during the south-east monsoon. Australian Journal of Marine and Freshwater Research, 13(3): 217–225, doi: 10.1071/MF9620217

    Article  Google Scholar 

  • Xue Liang, Wang Huiwu, Jiang Liqing, et al. 2016. Aragonite saturation state in a monsoonal upwelling system off Java, Indonesia. J Mar Syst, 153: 10–17, doi: 10.1016/j.jmarsys.2015.08.003

    Article  Google Scholar 

  • Zapata M, Garrido J L. 1991. Influence of injection conditions in reversed-phase high-performance liquid chromatography of chlorophylls and carotenoids. Chromatographia, 31(11–12): 589–594

    Article  Google Scholar 

  • Zapata M, Jeffrey S W, Wright S W, et al. 2004. Photosynthetic pigments in 37 species (65 strains) of Haptophyta: implications for oceanography and chemotaxonomy. Mar Ecol Progr Ser, 270: 83–102, doi: 10.3354/meps270083

    Article  Google Scholar 

  • Zapata M, Rodríguez F, Garrido J L. 2000. Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases. Mar Ecol Progr Ser, 195: 29–45, doi: 10.3354/meps195029

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingzhu Fu.

Additional information

Foundation item: The Global Change and Air-Sea Interaction Program under contract Nos GASI-02-IND-ST-Sspr and GASI-03-01-03-03; the National Natural Science Foundation of China under contract No. 41506185; the Special Funds for Basic Ocean Science Research of the First Institute of Oceanography, State Oceanic Administration of China under contract Nos 2013T04 and 2012T08.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, C., Fu, M., Song, H. et al. Phytoplankton pigment pattern in the subsurface chlorophyll maximum in the South Java coastal upwelling system, Indonesia. Acta Oceanol. Sin. 37, 97–106 (2018). https://doi.org/10.1007/s13131-018-1342-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-018-1342-x

Key words

Navigation