Skip to main content

Advertisement

Log in

Inhibition of spore germination of Ulva pertusa by the marine bacterium Pseudoalteromonas haloplanktis CI4

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

The effect of the bacterial strain CI4 on the germination of spores from the green alga Ulva pertusa was assayed and it was found that the bacterial biofilm and cell-free supernatant strongly inhibited spore germination. In attempts to define the chemical nature of the antifouling substance in the supernatant of CI4, the culture supernatants were tested for activity after heat treatment, enzymatic treatments, size fractionation, and separation into aqueous and organic fractions. Results suggest that this bacterium produces an extracellular component with specific activity toward algal spores that was heat-sensitive and between 3 and 10 kDa in molecular size. The exposure of the organic phase fraction to spores showed inhibitive effect on spore germination. Pronase and carboxypeptidase y did not significantly affect the activity of inhibitory component, suggesting that the component was not a protein or a peptide. The bacterium CI4 was identified as Pseudoalteromonas. haloplanktis based on the phenotypic characters and 16S rRNA gene analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong E, Boyd K G, Burgess J G. 2000. Prevention of marine biofouling using natural compounds from marine organisms. Biotechnol Annu Rev, 6: 221–241

    Article  Google Scholar 

  • Baumann P, Gauthier M J, Baumann L. 1984. Genus Alteromonas Baumann, Baumann, Mandel and Allen 1972. In: Krieg N R, Holt J G, eds. Bergey’s Manual of Systematic Bacteriology, v 1. Baltimore: Williams & Wilkins, 343–352

    Google Scholar 

  • Berland B R, Bonin D J, Maestrini S Y. 1972. Are some bacteria toxic for marine algae? Mar Biol, 12: 189–193

    Article  Google Scholar 

  • Bhattarai H D, Ganti V S, Paudel B, et al. 2007. Isolation of antifouling compounds from the marine bacterium, Shewanella oneidensis SCH0402. World J Microbiol Biotechnol, 23: 243–249

    Article  Google Scholar 

  • Bozal N, Tudela E, Rosselló-Mora R, et al. 1997. Pseudoalteromonas antarctica sp. nov., isolated from an Antarctic coastal environment. Int J Syst Bacteriol, 47: 345–351

    Google Scholar 

  • Braten T. 1971. The ultratructure of fertilization an zygote formation in the green alga Ulva mutabilis Foyn. J Cell Sci, 9: 621–635

    Google Scholar 

  • Burgess J G, Boyd K G, Armstrong E, et al. 2003. The development of a marine natural product-based antifouling paint. Biofouling, 19: 197–205

    Article  Google Scholar 

  • Cao Shanmao, Zhou Yibing, Mu Hongmei. 1999. Study on species composition and distribution of fouling organisms in the waters of Dalian coast. J Dalian Fisheries Univ (in Chinese), 14: 36–42

    Google Scholar 

  • Christie W W. 1982. Lipid Analysis. Oxford: Pergamon Press, 22

    Google Scholar 

  • Clare A S, Rittschof D, Gerhart D J, et al. 1992. Molecular approaches to nontoxic antifouling. Invertebr Reprod Dev, 22: 67–76

    Google Scholar 

  • Cole R, Popkin T. 1981. Electron microscopy. In: Gerhardt P, ed. Manual of methods for general microbiology. Washington, DC: American Society for Microbiology, 34–51

    Google Scholar 

  • Davis A R, Wright A E. 1990. Inhibition of larval settlement by natural products from the ascidian, Eudistoma olivaceum (Van Name). J Chem Ecol, 16: 1349–1357

    Article  Google Scholar 

  • De Nys R, Steinberg P D, Willemsen P, et al. 1994. Broad spectrum effects of secondary metabolites from the red algal Delisea pulchra in antifouling assays. Biofouling, 8: 259–271

    Article  Google Scholar 

  • Dong Xiuzhu, Cai Miaoying. 2001. Handbook in systematic identification of common bacteria (in Chinese). Beijing: Science Press, 354–389

    Google Scholar 

  • Egan S, Holmström C, Kjelleberg S. 2001. Pseudoalteromonas ulvae sp., nov a bacterium with antifouling activities isolated from the surface of a marine alga. Int J Syst Bacteriol, 51: 1499–1504

    Google Scholar 

  • Egan S, James S, Holmström C, et al. 2001. Inhibition of algal spore germination by the marine bacterium Pseudoalteromonas tunicata. FEMS Microbiol Ecol, 5: 67–73

    Google Scholar 

  • Egan S, Thomas T, Holmström C, et al. 2000. Phylogenic relationship and antifouling activity of bacterial epiphytes from marine algae Ulva lactuca. Environ Microbiol, 2: 343–347

    Article  Google Scholar 

  • Fletcher R, Callow M. 1992. The settlement, attachment and establishment of marine algal spores. Br Phycol J, 27: 303–329

    Article  Google Scholar 

  • Gauthier G, Gauthier M, Christen R. 1995. Phylogenetic analysis of the genera Alteromonas, Shewanella, and Moritella using genes coding for small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (emended) and Pseudoalteromonas gen. nov., and proposal of twelve new species combinations. Int J Syst Bacteriol, 45: 755–761

    Article  Google Scholar 

  • Henschel J R, Cook P A. 1990. The development of a marine fouling community in relation to the primary film of microorganisms. Biofouling, 2: 1–11

    Article  Google Scholar 

  • Holmström C, Egan S, Franks A, et al. 2002. Antifouling activities expressed by marine surface associated Pseudoalteromonas species. FEMS Microbiol Ecol, 41: 47–58

    Google Scholar 

  • Holmström C, Rittschof D, Kjelleberg S. 1992. Inhibition of settlement by larvae of Balanus amphitrite and Ciona intestinalis by a surface-colonizing marine bacterium. Appl Environ Microbiol, 58: 2111–2115

    Google Scholar 

  • Holmström C, James S, Egan S, et al. 1996. Inhibition of common fouling organisms by marine bacterial isolates with special reference to the role of pigmented bacteria. Biofouling, 10: 251–259

    Article  Google Scholar 

  • Holmström C, James S, Neilan B A, et al. 1998. Pseudoalteromonas tunicata sp. nov., a bacterium that produces antifouling agents. Int J Syst Bacteriol, 48: 1205–1212

    Article  Google Scholar 

  • Holmström C, Kjelleberg S. 1999. Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiol Ecol, 30: 285–293

    Google Scholar 

  • Holt J G, Krieg N R, Sneath P H A, et al. 1994. Bergey’s Manual of Determinative Bacteriology. 9th ed. Baltimore: Williams & Wilkins, 71–174

    Google Scholar 

  • Hugh R, Leifson E. 1953. The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various Gram-negative bacteria. J Bacteriol, 66: 24–26

    Google Scholar 

  • Ista L K, Callow M E, Finlay J A, et al. 2004. Effects of substratum surface chemistry and surface energy on attachment of marine bacteria and algal spores. Appl Environ Microbiol, 70: 4151–4157

    Article  Google Scholar 

  • Ivanova E P, Kiprianova E A, Mikhailov V V, et al. 1996. Characterization and identification of marine Alteromonas nigrifaciens strains and emendation of the description. Int J Syst Bacteriol, 46: 223–228

    Article  Google Scholar 

  • Ivanova E P, Kiprianova E A, Mikhailov V V. et al. 1998. Phenotypic diversity of Pseudoalteromonas citrea from different marine habitats and emendation of the description. Int J Syst Bacteriol, 48: 247–256

    Article  Google Scholar 

  • Ivanova E P, Zhukova N V, Svetashev V I, et al. 2000. Evaluation of phospholipid and fatty acid compositions as chemotaxonomic markers of Alteromonas-like Proteobacteria. Curr Microbiol, 41: 341–345

    Article  Google Scholar 

  • Ivanova E P, Romanenko L A, Matté M H, et al. 2001. Retrieval of the species Alteromonas tetraodonis Simidu et al. 1990 as Pseudoalteromonas tetraodonis comb. nov. and emendation of description. Int J Syst Evol Microbiol, 51: 1071–1078

    Google Scholar 

  • Ivanova E P, Sawabe T, Alexeeva Y V, et al. 2002. Pseudoalteromonas issachenkonii sp. nov., a bacterium that degrades the thallus of the brown alga Fucus evanescens. Int J Syst Evol Microbiol, 52: 229–234

    Google Scholar 

  • Jensen P, Jenkins K, Porter D, et al. 1998. Evidence that a new antibiotic flavone glycoside chemically defends the sea grass Thalassia testudium against zoosporic fungi. Appl Environ Microbiol, 664: 1490–1496

    Google Scholar 

  • Khudary R A, Stöβer N I, Qoura F, et al. 2008. Pseudoalteromonas arctica sp. nov., an aerobic, psychrotolerant, marine bacterium isolated from Spitzbergen. Int J Syst Evol Microbiol, 58: 2018–2024

    Article  Google Scholar 

  • Kon-ya K, Shimidzu N, Otaki N, et al. 1995. Inhibitory effect of bacterial ubiquinones on the settling of barnacle, Balanus amphitrite. Experientia, 51: 153–155

    Article  Google Scholar 

  • Kovacs N. 1956. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature, 178: 703

    Article  Google Scholar 

  • Lane D J. 1991. 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M, ed. Nucleic acid techniques in bacterial systematics. New York: John Wiley & Sons, 115–175

    Google Scholar 

  • Lee S, Kato J, Takiguchi N, et al. 2000. Involvement of an extracellular protease in algicidal activity of the marine bacterium Pseudoalteromonas sp. Strain A28. Appl Environ Microbiol, 66: 4334–4339

    Article  Google Scholar 

  • Long R A, Qureshi A, Faulkner D J, et al. 2003. 2-n-pentyl-4-uinolinol produced by a marine Alteromonas sp. and its potential ecological and biogeochemical roles. Appl Environ Microbiol, 69: 568–576

    Article  Google Scholar 

  • Lovejoy C, Bowman J, Hallegraeff G. 1998. Algicidal effects of a novel marine Pseudoalteromonas isolate (class Proteobacteria, gamma subdivision) on harmful algal bloom species of the genera Chattonella, Gymnodinium, and Heterosigma. Appl Environ Microbiol, 64: 2806–2813

    Google Scholar 

  • Ma Yuexin, Liu Pengliang, Yu Shubo, et al. 2009. Inhibition of common fouling organisms in mariculture by epiphytic bacteria from the surfaces of seaweeds and invertebrates. Acta Ecologica Sinica, 29: 222–226

    Article  Google Scholar 

  • Ma Yuexin, Yu Shubo, Li Jun, et al. 2007. Antibacterial activities of epiphytic bacteria from the surfaces of seaweeds and invertebrates against fouling bacteria isolated from a net cage in coastal sea in Dalian. J Dalian Fisheries Univ (in Chinese), 22: 11–15

    Google Scholar 

  • Mården P, Tunlid A, Malmcrona-Friberg K, et al. 1985. Physiological and morphological changes during short term starvation of marine bacterial isolates. Arch Microbiol, 142: 326–332

    Article  Google Scholar 

  • Metcalfe L D, Schmitz A A, Peaka J R. 1966. Rapid preparation of fatty acids esters from lipids for gas chromatographic analysis. Anal Chem, 38: 514–515

    Article  Google Scholar 

  • Mizobuchi S, Adachi K, Miki W. 1996. Antifouling polyhydroxysterols isolated from a Palauan octocoral of Sinularia sp. Fish Sci, 62: 98–100

    Google Scholar 

  • Moriarty D J W, Bell R T. 1993. Bacterial growth and starvation in aquatic environments. In: Kjelleberg S, ed. Starvation in Bacteria. New York: Plenum, 25–48

    Google Scholar 

  • Nakanishi K, Nishijima M, Nishimura M, et al. 1996. Bacteria that induce morphogenesis in Ulva pertusa (chlorophyta) grown under axenic conditions. J Phycol, 32: 479–482

    Article  Google Scholar 

  • Nakanishi K, Nishijima M, Nomoto A M, et al. 1999. Requisite morphologic interaction for attachment between Ulva pertusa (Chlorophyta) and symbiotic bacteria. Mar Biotechnol, 1: 107–111

    Article  Google Scholar 

  • Patel P, Callow M E, Joint I, et al. 2003. Specificity in larval settlement modifying response of bacterial biofilms towards zoospores of the marine alga Enteromorpha. Environ Microbiol, 5: 338–349

    Article  Google Scholar 

  • Sawabe T, Oda Y, Shiomi Y, et al. 1995. Alginate degradation by bacteria isolated from the gut of sea urchins and abalones. Microb Ecol, 30: 193–202

    Article  Google Scholar 

  • Sawabe T, Tanaka R, Iqbal M M, et al. 2000. Assignment of Alteromonas elyakovii KMM 162T and five strains isolated from spot-wounded fronds of Laminaria japonica to Pseudoalteromonas elyakovii comb. nov. and the extended description of the species. Int J Syst Evol Microbiol, 50: 265–271

    Google Scholar 

  • Silva-Aciares F, Riquelme C. 2008. Inhibition of attachment of some fouling diatoms and settlement of Ulva lactuca zoospores by film-forming bacterium and their extracellular products isolated from biofouled substrata in Northern Chile. Electronic J Biotechnol, 11: 1–11

    Google Scholar 

  • Skerman V B D. 1967. A guide to the identification of the genera of bacteria. In: Skerman V B D, ed. Abstracts of Microbiological Methods. New York: Wiley, 147

    Google Scholar 

  • Tamura K, Dudley J, Nei M, et al. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Mol Biol Evol, 24: 1596–1599

    Article  Google Scholar 

  • Thomas R W S P, Allsopp D. 1983. The effects of certain periphytic marine bacteria upon the settlement and growth of Enteromorpha, a fouling alga. Biodeterioration, 5: 348–357

    Google Scholar 

  • Wahl M. 1989. Marine epibiosis. I. Fouling and antifouling: some basic aspects. Mar Ecol Prog Ser, 58: 175–186

    Article  Google Scholar 

  • Wigglesworth-Cooksey B, Cooksey K E. 2005. Use of fluorophore conjugated lectins to study cell-cell interactions in model marine biofilms. Appl Environ Microbiol, 71: 428–435

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuexin Ma.

Additional information

Foundation item: The Natural Science Foundation of Liaoning Province under contract No. 20062129.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, Y., Liu, P., Zhang, Y. et al. Inhibition of spore germination of Ulva pertusa by the marine bacterium Pseudoalteromonas haloplanktis CI4. Acta Oceanol. Sin. 29, 69–78 (2010). https://doi.org/10.1007/s13131-010-0009-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-010-0009-z

Key words

Navigation