Skip to main content

Advertisement

Log in

Climatic niche evolution in the Andean genus Menonvillea (Cremolobeae: Brassicaceae)

  • Original Article
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

The study of how climatic niches change over evolutionary time has recently attracted the interest of many researchers. Different methodologies have been employed principally to analyze the temporal dynamics of the niche and specially to test for the presence of phylogenetic niche conservatism. Menonvillea, a genus of Brassicaceae including 24 species, is distributed primarily along the Andes of Argentina and Chile, with some taxa growing in southern Patagonia and others in the Atacama Desert and the Chilean Matorral. The genus is highly diversified morphologically but also presents a remarkably wide ecological range, growing from the high Andean elevations, to the dry coastal deserts in Chile, or the Patagonia Steppe in Argentina. In this study, we used molecular phylogenies together with climatic data to study climatic niche evolution in the genus. The results show that the main climatic niche shifts in Menonvillea occurred between the sections Cuneata-Scapigera and sect. Menonvillea throughout the Mid-Late Miocene, and associated with the two main geographical distribution centers of the genus: the highlands of the central-southern Andes and the Atacama Desert-Chilean Matorral, respectively. Climatic niches in these lineages were mainly differentiated by the aridity and potential evapotranspiration, the minimum temperatures of the coldest month, and the temperature annual range and seasonality. Niche evolution in Menonvillea deviated from a Brownian motion process, with most of the climatic dimension best-fitting to an Ornstein-Uhlenbeck model of multiple adaptive peaks. Our results also indicated that higher aridity levels and lower annual temperature ranges were associated with the evolution of the annual habit, as exemplified by the distribution of sect. Menonvillea. Finally, the results suggested that climatic niche evolution in Menonvillea exhibited some degree of phylogenetic niche conservatism, fundamentally within the two main lineages (sect. Menonvillea and sects. Cuneata-Scapigera).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ackerly, D. (2003). Community assembly, niche conservatism, and adaptative evolution in changing environments. International Journal of Plant Sciences, 164, S165–S184.

    Article  Google Scholar 

  • Ackerly, D. (2009). Conservatism and diversification of plant functional traits: evolutionary rates versus phylogenetic signal. Proceedings of the National Academy of Sciences, 106(Supplement 2), 19699–19706.

    Article  CAS  Google Scholar 

  • Ahmadzadeh, F., Flecks, M., Carretero, M. A., Böhme, W., Ilgaz, C., Engler, J. O., Harris, D. J., Üzüm, N., & Rödder, D. (2013). Rapid lizard radiation lacking niche conservatism: ecological diversification within a complex landscape. Journal of Biogeography, 40(9), 1807–1818.

    Article  Google Scholar 

  • Algar, A. C., & Mahler, D. L. (2015). Area, climate heterogeneity, and the response of climate niches to ecological opportunity in island radiations of Anolis lizards. Global Ecology and Biogeography. doi:10.1111/geb.12327.

    Google Scholar 

  • Angelis, K., & Dos Reis, M. (2015). The impact of ancestral population size and incomplete lineage sorting on Bayesian estimation of species divergence times. Current Zoology, 61(5), 874–885.

    Article  Google Scholar 

  • Armesto, J. J., Arroyo, M. T. K., & Hinojosa, L. F. (2007). The Mediterranean environment of central Chile. In T. T. Veblen, K. R. Young, & A. Orme (Eds.), The physical geography of South America (pp. 184–199). New York: Oxford University Press.

    Google Scholar 

  • Beaulieu, J. M., Jhwueng, D. C., Boettiger, C., & O’Meara, B. C. (2012). Modeling stabilizing selection: expanding the Ornstein–Uhlenbeck model of adaptive evolution. Evolution, 66(8), 2369–2383.

    Article  PubMed  Google Scholar 

  • Bivand, R. S., & Lewin-Koh, N. (2015). maptools: tools for reading and handling spatial objects. R package version 0.8-36. http://CRAN.R-project.org/package = maptools

  • Bivand, R. S., Pebesma, E., & Gomez-Rubio, V. (2013). Applied spatial data analysis with R (2nd ed.). New York: Springer.

    Book  Google Scholar 

  • Blisniuk, P. M., Stern, L. A., Chamberlain, C. P., Idleman, B., & Zeitler, P. K. (2005). Climatic and ecologic changes during Miocene surface uplift in the Southern Patagonian Andes. Earth and Planetary Science Letters, 230, 125–142.

    Article  CAS  Google Scholar 

  • Boucher, F. C., Thuiller, W., Roquet, C., Douzet, R., Aubert, S., Alvarez, N., & Lavergne, S. (2012). Reconstructing the origins of high-alpine niches and cushion life form in the genus Androsace s.l. (Primulaceae). Evolution, 66(4), 1255–1268.

    Article  PubMed  Google Scholar 

  • Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C. H., Xie, D., Suchard, M. A., Rambaut, A., & Drummond, A. J. (2014). BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Computational Biology, 10(4), e1003537. doi:10.1371/journal.pcbi.1003537.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bowman, A. W., & Azzalini, A. (2014). R package ‘sm’: nonparametric smoothing methods (version 2.2-5.4). http://CRAN.R-project.org/package=sm

  • Broennimann, O., Fitzpatrick, M. C., Pearman, P. B., Petitpierre, B., Pellissier, L., Yoccoz, N. G., Thuiller, W., Fortin, M., Randin, C., Zimmermann, N. E., Graham, C. H., & Guisan, A. (2012). Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography, 21(4), 481–497.

    Article  Google Scholar 

  • Broennimann, O., Petitpierre, B., Randin, C., Engler, R., Di Cola, V., Breiner, F., D’Amen, M., Pellissier, L., Pottier, J., Pio, D., Mateo, R.G., Hordijk, W., Dubuis, A., Scherrer, D., Salamin, N. & Guisan, A. (2015). ecospat: spatial ecology miscellaneous methods. R package version 1.1. http://CRAN.R-project.org/package=ecospat

  • Butler, M. A., & King, A. A. (2004). Phylogenetic comparative analysis: a modeling approach for adaptive evolution. The American Naturalist, 164(6), 683–695.

    Article  Google Scholar 

  • Cabrera, A., & Willink, A. (1973). Biogeografía de América Latina. Washington: Monografías OEA.

    Google Scholar 

  • Calenge, C. (2006). The package adehabitat for the R software: a tool for the analysis of space and habitat use by animals. Ecological Modelling, 197, 516–519.

    Article  Google Scholar 

  • Chacón, J., de Assis, M. C., Meerow, A. W., & Renner, S. S. (2012). From East Gondwana to Central America: historical biogeography of the Alstroemeriaceae. Journal of Biogeography, 39, 1806–1818.

    Article  Google Scholar 

  • Cole, L. C. (1954). The population consequences of life history phenomena. Quarterly Review of Biology, 29, 103–137.

    Article  CAS  PubMed  Google Scholar 

  • Cooper, N., Jetz, W., & Freckleton, R. P. (2010). Phylogenetic comparative approaches for studying niche conservatism. Journal of Evolutionary Biology, 23(12), 2529–2539.

    Article  CAS  PubMed  Google Scholar 

  • R Core Team. (2015). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. http://www.R-project.org/.

    Google Scholar 

  • Drummond, C. S., Eastwood, R. J., Miotto, S. T., & Hughes, C. E. (2012). Multiple continental radiations and correlates of diversification in Lupinus (Leguminosae): testing for key innovation with incomplete taxon sampling. Systematic Biology, 61, 443–460.

    Article  PubMed  PubMed Central  Google Scholar 

  • Duran, A., Meyer, A. L., & Pie, M. R. (2013). Climatic niche evolution in New World monkeys (Platyrrhini). Plos One, 8, e83684. doi:10.1371/journal.pone.0083684.

    Article  PubMed  PubMed Central  Google Scholar 

  • Elith, J., & Leathwick, J. R. (2009). Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40(1), 677–697.

    Article  Google Scholar 

  • Encinas, A., Zambrano, P. A., Finger, K. L., Valencia, V., Buatois, L. A., & Duhart, P. (2013). Implications of deep-marine Miocene deposits on the evolution of the North Patagonian Andes. The Journal of Geology, 121, 215–238.

    Article  CAS  Google Scholar 

  • Evans, M. E., Hearn, D. J., Hahn, W. J., Spangle, J. M., & Venable, D. L. (2005). Climate and life-history evolution in evening primroses (Oenothera, Onagraceae): a phylogenetic comparative analysis. Evolution, 59(9), 1914–1927.

    Article  CAS  PubMed  Google Scholar 

  • Evans, M. E., Smith, S. A., Flynn, R. S., & Donoghue, M. J. (2009). Climate, niche evolution, and diversification of the “bird-cage” evening primroses (Oenothera, sections Anogra and Kleinia). The American Naturalist, 173(2), 225–240.

    Article  PubMed  Google Scholar 

  • Felsenstein, J. (1985). Phylogenies and the comparative method. American Naturalist, 125, 1–15.

    Article  Google Scholar 

  • Franzke, A., Koch, M. A., & Mummenhoff, K. (2016). Turnip time travels: age estimates in Brassicaceae. Trends in Plant Science. doi:10.1016/j.tplants.2016.01.024

  • Garzione, C. N., Hoke, G. D., Libarkin, J. C., Withers, S., MacFadden, B., Eiler, J., Ghosh, P., & Mulch, A. (2008). Rise of the Andes. Science, 320, 1304–1307.

    Article  CAS  PubMed  Google Scholar 

  • Graham, A. (2009). The Andes: a geological overview from a biological perspective. Annals of the Missouri Botanical Garden, 96, 371–385.

    Article  Google Scholar 

  • Graham, A., Gregory-Wodzicki, K. M., & Wright, K. L. (2001). Studies in Neotropical Paleobotany. XV. A Mio-Pliocene palynoflora from the Eastern Cordillera, Bolivia: implications for the uplift history of the Central Andes. American Journal of Botany, 88, 1545–1557.

    Article  CAS  PubMed  Google Scholar 

  • Gregory-Wodzicki, K. M. (2000). Uplift history of the Central and Northern Andes: a review. Geological Society of America Bulletin, 112, 1091–1105.

    Article  Google Scholar 

  • Guisan, A., & Thuiller, W. (2005). Predicting species distribution: offering more than simple habitat models. Ecology Letters, 8(9), 993–1009.

    Article  Google Scholar 

  • Guisan, A., & Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. Ecological Modelling, 135(2), 147–186.

    Article  Google Scholar 

  • Guisan, A., Tingley, R., Baumgartner, J. B., Naujokaitis-Lewis, I., Sutcliffe, P. R., Tulloch, A. I., Regan, T. J., Brotons, L., McDonald-Madden, E., Mantyka-Pringle, C., Martin, T. G., Rhodes, J. R., Maggini, R., Setterfield, S. A., Elith, J., Schwartz, M. W., Wintle, B. A., Broennimann, O., Austin, M., Ferrier, S., Kearney, M. R., Possingham, H. P., & Buckley, Y. M. (2013). Predicting species distributions for conservation decisions. Ecology Letters, 16(12), 1424–1435.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hansen, T. F. (1997). Stabilizing selection and the comparative analysis of adaptation. Evolution, 51(5), 1341–1351.

    Article  Google Scholar 

  • Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E., & Challenger, W. (2008). GEIGER: investigating evolutionary radiations. Bioinformatics, 24, 129–131.

    Article  CAS  PubMed  Google Scholar 

  • Harmon, L. J., Losos, J. B., Davies, T. J., Gillespie, R. G., Gittleman, J. L., Bryan Jennings, W., Kozak, K. H., McPeek, M. A., Moreno-Roark, F., Near, T. J., Purvis, A., Ricklefs, R. E., Schluter, D., Schulte, J. A., II, Seehausen, O., Sidlauskas, B. L., Torres-Carvajal, O., Weir, J. T., & Mooers, A. Ø. (2010). Early bursts of body size and shape evolution are rare in comparative data. Evolution, 64(8), 2385–2396.

    PubMed  Google Scholar 

  • Hartley, A. J., Chong, G., Houston, J., & Mather, A. E. (2005). 150 million years of climatic stability: evidence from the Atacama Desert, northern Chile. Journal of the Geological Society, 162(3), 421–424.

    Article  Google Scholar 

  • Harvey, P. H., & Pagel, M. D. (1991). The comparative method in evolutionary biology (Vol. 239). Oxford: Oxford University Press.

    Google Scholar 

  • Haselton, K., Hilley, G., & Strecker, M. R. (2002). Average Pleistocene climatic patterns in the southern Central Andes: controls on mountain glaciation and paleoclimate implications. The Journal of Geology, 110(2), 211–226.

    Article  Google Scholar 

  • Heibl, C., & Calenge, C. (2013). phyloclim: integrating phylogenetics and climatic niche modeling. R package version 0.9-4. http://CRAN.R-project.org/package = phyloclim

  • Heikkinen, R. K., Luoto, M., Araújo, M. B., Virkkala, R., Thuiller, W., & Sykes, M. T. (2006). Methods and uncertainties in bioclimatic envelope modelling under climate change. Progress in Physical Geography, 30(6), 751–777.

    Article  Google Scholar 

  • Heled, J., & Drummond, A. J. (2010). Bayesian inference of species trees from multilocus data. Molecular Biology and Evolution, 27(3), 570–580.

    Article  CAS  PubMed  Google Scholar 

  • Hijmans, R. J. (2015). raster: geographic data analysis and modeling. R package version 2.3-40. http://CRAN.R-project.org/package = raster

  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978.

    Article  Google Scholar 

  • Hijmans, R. J., Guarino, L., & Mathur, P. 2012. DIVA-GIS. Version 7.5. Manual. Available at: http://www.diva-gis.org/docs/DIVA-GIS_manual_7.pdf

  • Ho, L. S. T., & Ané, C. (2014). A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Systematic Biology, 63(3), 397–408.

    Article  PubMed  Google Scholar 

  • Hoffmann, M. H. (2005). Evolution of the realized climatic niche in the genus Arabidopsis (Brassicaceae). Evolution, 59(7), 1425–1436.

    PubMed  Google Scholar 

  • Houston, J., & Hartley, A. J. (2003). The central Andean west-slope rainshadow and its potential contribution to the origin of hyper-aridity in the Atacama Desert. International Journal of Climatology, 23(12), 1453–1464.

    Article  Google Scholar 

  • Hunt, G. (2012). Measuring rates of phenotypic evolution and the inseparability of tempo and mode. Paleobiology, 38(3), 351–373.

    Article  Google Scholar 

  • Hutchinson, G. E. (1978). An introduction to population ecology. New Haven: Yale University Press.

    Google Scholar 

  • Hutter, C. R., Guayasamin, J. M., & Wiens, J. J. (2013). Explaining Andean megadiversity: the evolutionary and ecological causes of glassfrog elevational richness patterns. Ecology Letters, 16(9), 1135–1144.

    Article  PubMed  Google Scholar 

  • Ingram, T., & Mahler, D. L. (2013). SURFACE: detecting convergent evolution from comparative data by fitting Ornstein-Uhlenbeck models with stepwise AIC. Methods in Ecology and Evolution, 4, 416–425. doi:10.1111/2041-210X.12034.

    Article  Google Scholar 

  • Ives, A. R., & Garland, T. (2010). Phylogenetic logistic regression for binary dependent variables. Systematic Biology, 59(1), 9–26.

    Article  PubMed  Google Scholar 

  • Jara-Arancio, P., Arroyo, M. T., Guerrero, P. C., Hinojosa, L. F., Arancio, G., & Méndez, M. A. (2013). Phylogenetic perspectives on biome shifts in Leucocoryne (Alliaceae) in relation to climatic niche evolution in western South America. Journal of Biogeography, 41(2), 328–338.

    Article  Google Scholar 

  • Joly, S., Heenan, P. B., & Lockhart, P. J. (2013). Species radiation by niche shifts in New Zealand’s rockcresses (Pachycladon, Brassicaceae). Systematic Biology, 63(2), 192–202.

    Article  PubMed  Google Scholar 

  • Jordan, T. E., Burns, W. M., Veiga, R., Pángaro, F., Copeland, P., Kelley, S., & Mpodozis, C. (2001). Extension and basin formation in the southern Andes caused by increased convergence rate: a Mid-Cenozoic trigger for the Andes. Tectonics, 20, 308–324.

    Article  Google Scholar 

  • Kamilar, J. M., & Cooper, N. (2013). Phylogenetic signal in primate behaviour, ecology and life history. Philosophical Transactions of the Royal Society, B: Biological Sciences, 368, 1618. doi:10.1098/rstb.2012.0341.

    Article  Google Scholar 

  • Knouft, J. H., Losos, J. B., Glor, R. E., & Kolbe, J. J. (2006). Phylogenetic analysis of the evolution of the niche in lizards of the Anolis sagrei group. Ecology, 87(Supplement 7), S29–S38.

    Article  PubMed  Google Scholar 

  • Leier, A., McQuarrie, N., Garzione, C., & Eiler, J. (2013). Stable isotope evidence for multiple pulses of rapid surface uplift in the Central Andes, Bolivia. Earth and Planetary Science Letters, 371, 49–58.

    Article  Google Scholar 

  • Lo Presti, R. M., & Oberprieler, C. (2009). Evolutionary history, biogeography and eco-climatological differentiation of the genus Anthemis L. (Compositae, Anthemideae) in the circum-Mediterranean area. Journal of Biogeography, 36, 1313–1332.

    Article  Google Scholar 

  • Losos, J. B. (2008). Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecology Letters, 11(10), 995–1003.

    Article  PubMed  Google Scholar 

  • Löytynoja, A. (2014). Phylogeny-aware alignment with PRANK. In D. J. Russel (Ed.), Multiple sequence alignment methods (pp. 155–170). New York: Humana.

    Chapter  Google Scholar 

  • Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., Hornik, K. (2015). cluster: cluster analysis basics and extensions. R package version 2.0.3. http://CRAN.R-project.org/package=cluster

  • McCormack, J. E., Heled, J., Delaney, K. S., Peterson, A. T., & Knowles, L. L. (2011). Calibrating divergence times on species trees versus gene trees: implications for speciation history of Aphelocoma jays. Evolution, 65(1), 184–202.

    Article  PubMed  Google Scholar 

  • Münkemüller, T., Lavergne, S., Bzeznik, B., Dray, S., Jombart, T., Schiffers, K., & Thuiller, W. (2012). How to measure and test phylogenetic signal. Methods in Ecology and Evolution, 3(4), 743–756.

    Article  Google Scholar 

  • Münkemüller, T., Boucher, F. C., Thuiller, W., & Lavergne, S. (2015). Phylogenetic niche conservatism—common pitfalls and ways forward. Functional Ecology, 29(5), 627–639.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nyári, Á. S., & Reddy, S. (2013). Comparative phyloclimatic analysis and evolution of ecological niches in the scimitar babblers (Aves: Timaliidae: Pomatorhinus). PLoS ONE, 8(2), e55629. doi:10.1371/journal.pone.0055629.

    Article  PubMed  PubMed Central  Google Scholar 

  • Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos P., Stevens, M. H.H., & Wagner, H. (2015). vegan: community ecology package. R package version 2.3-0. http://CRAN.R-project.org/package = vegan

  • O’Meara, B. C., Ané, C., Sanderson, M. J., & Wainwright, P. C. (2006). Testing for different rates of continuous trait evolution using likelihood. Evolution, 60(5), 922–933.

    Article  PubMed  Google Scholar 

  • Özüdoğru, B., Akaydın, G., Erik, S., Al-Shehbaz, I. A., & Mummenhoff, K. (2015). Phylogenetic perspectives, diversification, and biogeographic implications of the eastern Mediterranean endemic genus Ricotia L. (Brassicaceae). Taxon, 64, 727–740.

    Article  Google Scholar 

  • Pagel, M. (1999). Inferring the historical patterns of biological evolution. Nature, 401(6756), 877–884.

    Article  CAS  PubMed  Google Scholar 

  • Pearman, P. B., Guisan, A., Broennimann, O., & Randin, C. F. (2008). Niche dynamics in space and time. Trends in Ecology & Evolution, 23(3), 149–158.

    Article  Google Scholar 

  • Peterson, A. T. (2011). Ecological niche conservatism: a time-structured review of evidence. Journal of Biogeography, 38(5), 817–827.

    Article  Google Scholar 

  • Peterson, A. T., Soberón, J., & Sánchez-Cordero, V. (1999). Conservatism of ecological niches in evolutionary time. Science, 285(5431), 1265–1267.

    Article  CAS  PubMed  Google Scholar 

  • Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3), 231–259.

    Article  Google Scholar 

  • Plummer, M., Best, N., Cowles, K., & Vines, K. (2006). CODA: convergence diagnosis and output analysis for MCMC. R News, 6, 7–11.

    Google Scholar 

  • Rabassa, J., Coronato, A., & Martinez, O. (2011). Late Cenozoic glaciations in Patagonia and Tierra del Fuego: an updated review. Biological Journal of the Linnean Society, 103(2), 316–335.

    Article  Google Scholar 

  • Rabosky, D. L. (2014). Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS ONE, 9(2), e89543. doi:10.1371/journal.pone.0089543.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rabosky, D. L., Santini, F., Eastman, J., Smith, S. A., Sidlauskas, B., Chang, J., & Alfaro, M. E. (2013). Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation. Nature Communications, 4, 1958. doi:10.1038/ncomms2958.

    Article  PubMed  Google Scholar 

  • Rabosky, D. L., Donnellan, S. C., Grundler, M., & Lovette, I. J. (2014). Analysis and visualization of complex macroevolutionary dynamics: an example from Australian scincid lizards. Systematic Biology, 63(4), 610–627.

    Article  PubMed  Google Scholar 

  • Rabosky, D., Grundler, M., Title, P., Anderson, C., Shi, J., Brown, J., & Huang, H. (2015). BAMMtools: analysis and visualization of macroevolutionary dynamics on phylogenetic trees. R package version 2.0.5. http://CRAN.R-project.org/package = BAMMtools

  • Rambaut, A., Suchard, M. A., Xie, D., & Drummond, A. J. (2013). Tracer v1.6.0. http://beast.bio.ed.ac.uk/

  • Rato, C., Harris, D. J., Perera, A., Carvalho, S. B., Carretero, M. A., & Rödder, D. (2015). A Combination of divergence and conservatism in the niche evolution of the Moorish Gecko, Tarentola mauritanica (Gekkota: Phyllodactylidae). PLoS ONE, 10(5), e0127980. doi:10.1371/journal.pone.0127980.

    Article  PubMed  PubMed Central  Google Scholar 

  • Reich, M., Palacios, C., Vargas, G., Luo, S., Cameron, E. M., Leybourne, M. I., Parada, M. A., Zuñiga, A., & You, C. F. (2009). Supergene enrichment of copper deposits since the onset of modern hyperaridity in the Atacama Desert, Chile. Mineralium Deposita, 44, 497–504.

    Article  CAS  Google Scholar 

  • Revell, L. J. (2012). phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3(2), 217–223. doi:10.1111/j.2041-210X.2011.00169.x.

    Article  Google Scholar 

  • Rollins, R. C. (1955). A revisionary study of the genus Menonvillea (Cruciferae). Contributions from the Gray Herbarium of Harvard University, 177, 3–57.

    Google Scholar 

  • Rundel, P. W., Dillon, M. O., Palma, B., Mooney, H. A., Gulmon, S. L., & Ehleringer, J. R. (1991). The phytogeography and ecology of the coastal Atacama and Peruvian deserts. Aliso, 13(1), 1–49.

    Google Scholar 

  • Salariato, D. L., Zuloaga, F. O., & Al-Shehbaz, I. A. (2013). Molecular phylogeny of Menonvillea and recognition of the new genus Aimara (Brassicaceae: Cremolobeae). Taxon, 62, 1220–1234.

    Article  Google Scholar 

  • Salariato, D. L., Zuloaga, F. O., & Al-Shehbaz, I. A. (2014). A revision of the genus Menonvillea (Cremolobeae, Brassicaceae). Phytotaxa, 162(5), 241–298.

    Article  Google Scholar 

  • Salariato, D. L., Zuloaga, F. O., Cano, A., & Al-Shehbaz, I. A. (2015). Molecular phylogenetics of tribe Eudemeae (Brassicaceae) and implications for its morphology and distribution. Molecular Phylogenetics and Evolution, 82, 43–59.

    Article  PubMed  Google Scholar 

  • Salariato, D. L., Zuloaga, F. O., Franzke, A., Mummenhoff, K., & Al-Shehbaz, I. A. (2016). Diversification patterns of the CES clade (tribes Cremolobeae, Eudemeae, Schizopetaleae: Brassicaceae) along Andean South America. Botanical Journal of the Linnean Society. doi:10.1111/boj.12430.

  • Schaffer, W. M., & Gadgil, M. (1975). Selection for optimal life histories in plants. In M. Cody & J. Diamond (Eds.), The ecology and evolution of communities (pp. 142–157). Cambridge: Harvard University Press.

    Google Scholar 

  • Schlunegger, F., Kober, F., Zeilinger, G., & von Rotz, R. (2010). Sedimentology-based reconstructions of paleoclimate changes in the Central Andes in response to the uplift of the Andes, Arica region between 19° and 21° S latitude, northern Chile. International Journal of Earth Sciences, 99, 123–137.

    Article  CAS  Google Scholar 

  • Schnitzler, J., Graham, C. H., Dormann, C. F., Schiffers, K., & Linder, P. H. (2012). Climatic niche evolution and species diversification in the Cape flora, South Africa. Journal of Biogeography, 39(12), 2201–2211.

    Article  Google Scholar 

  • Schoener, T. W. (1970). Nonsynchronous spatial overlap of lizards in patchy habitats. Ecology, 51, 408–418.

    Article  Google Scholar 

  • Smith, S. A., & Donoghue, M. J. (2010). Combining historical biogeography with niche modeling in the Caprifolium clade of Lonicera (Caprifoliaceae, Dipsacales). Systematic Biology, 59(3), 322–341.

    Article  PubMed  Google Scholar 

  • Soberón, J. (2007). Grinnellian and Eltonian niches and geographic distributions of species. Ecology Letters, 10(12), 1115–1123.

    Article  PubMed  Google Scholar 

  • Thiers, B. (2015). Index Herbariorum: a global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. http://sweetgum.nybg.org/ih

  • Title, P. O., & Burns, K. J. (2015). Rates of climatic niche evolution are correlated with species richness in a large and ecologically diverse radiation of songbirds. Ecology Letters, 18(5), 433–440.

    Article  PubMed  Google Scholar 

  • Toro-Núñez, O., Mort, M. E., Ruiz-Ponce, E., & Al-Shehbaz, I. A. (2013). Phylogenetic relationships of Mathewsia and Schizopetalon (Brassicaceae) inferred from nrDNA and cpDNA regions: taxonomic and evolutionary insights from an Atacama Desert endemic lineage. Taxon, 62, 343–356.

    Article  Google Scholar 

  • Trabucco, A., & Zomer, R.J. (2009). Global aridity index (global-aridity) and global potential evapo-transpiration (global-PET) geospatial database. CGIAR Consortium for Spatial Information. Published online, available from the CGIAR-CSI GeoPortal at: http://www.csi.cgiar.org.

  • Vieites, D. R., Nieto-Román, S., & Wake, D. B. (2009). Reconstruction of the climate envelopes of salamanders and their evolution through time. Proceedings of the National Academy of Sciences, 106(Supplement 2), 19715–19722.

    Article  CAS  Google Scholar 

  • Warren, D. L., Glor, R. E., & Turelli, M. (2008). Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution, 62(11), 2868–2883.

    Article  PubMed  Google Scholar 

  • Wiens, J. J. (2008). Commentary on Losos (2008): niche conservatism deja vu. Ecology Letters, 11(10), 1004–1005.

    Article  PubMed  Google Scholar 

  • Wiens, J. J., & Graham, C. H. (2005). Niche conservatism: integrating evolution, ecology, and conservation biology. Annual Review of Ecology, Evolution, and Systematics, 36, 519–539.

    Article  Google Scholar 

  • Wiens, J. J., Ackerly, D. D., Allen, A. P., Anacker, B. L., Buckley, L. B., Cornell, H. V., Damschem, E. I., Davies, T. J., Grytnes, J., Harrison, S. P., Hawkins, B. A., Holt, C. M., & Stephens, P. R. (2010). Niche conservatism as an emerging principle in ecology and conservation biology. Ecology Letters, 13(10), 1310–1324.

    Article  PubMed  Google Scholar 

  • Zachos, J., Pagani, M., Sloan, L., Thomas, E., & Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292(5517), 686–693.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by ANPCyT (Agencia Nacional de Promoción Científica y Tecnológica) grant PICT-2013-1042, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas) grants D4541-12 and PIP-112-201301-00124CO, and the National Geographic Society grant #9398-13, for which we are profoundly grateful. Fieldwork and visits to herbaria were also supported by the Myndel Botanical Foundation grants 2011 and 2012. Our deep gratitude goes to Dr. Ihsan A. Al-Shehbaz for the critical review of this work and his valuable support, guidance, and suggestions in the study of South American Brassicaceae over the years. We thank Fabiana Cantarell for the help in the processing of the collection permits for the National Parks of Argentina (APN project No. 1103), and the directors, curators, and collection managers of the herbaria listed.

Data archiving

Data used in this paper are archived in TreeBase (http://purl.org/phylo/treebase/phylows/study/TB2:S18952) and Dryad (doi:10.5061/dryad.c5271).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego L. Salariato.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Values for the main variables associated to the first five principal components in the studied area. A. PC1: Potential Evapo-transpiration (PET) and Aridity index (IA). B. Min Temperature of Coldest Month (BIO6), Altitude (ALT). C. PC3: Precipitation Seasonality (BIO15), Isothermality (BIO3). D. PC4: Temperature Annual Range (BIO7), Temperature Seasonality (BIO4). E. PC5: Mean Temperature of Driest Quarter (BIO9), Precipitation of Warmest Quarter (BIO18). F. Distribution of Menonvillea in South America and studied area represents by the minimum convex polygons. Red, black, and blue dots correspond to species of sects. Cuneata, Scapigera, and Menonvillea, respectively. (PDF 1780 kb)

Fig. S2

Climatic niche of Menonvillea species included in sects. Cuneata and Scapigera, produced by the two main axes of the PCA-env. For each section, the grey-to-black shading represents the grid cell density of the species occurrence (black being the highest density). The first dashed line represents the 50 % of the available environment and the solid line represents the 100 %. Lower three taxa are included in the sect. Scapigera, the remaining species belong to sect. Cuneata. (PDF 356 kb)

Fig. S3

Climatic niche of Menonvillea species included in sect. Menonvillea, produced by the two main axes of the PCA-env. For each section, the grey-to-black shading represents the grid cell density of the species occurrence (black being the highest density). The first dashed line represents the 50 % of the available environment and the solid line represents the 100 %. (PDF 297 kb)

Fig. S4

Predicted suitable climatic conditions (logistic output) from the MaxEnt model for species included in Menonvillea sects. Cuneata and Scapigera using the five first principal components as climatic variables. (PDF 642 kb)

Fig. S5

Predicted suitable climatic conditions (logistic output) from the MaxEnt model for species included in Menonvillea sect. Menonvillea using the five first principal components as climatic variables. (PDF 478 kb)

Fig. S6

Maximum clade credibility tree (MCCT) estimated from nuclear ribosomal ITS and three chloroplast DNA regions (trnL-F, trnH-psbA, rps16 intron) using the concatenated method implemented in BEAST, uncorrelated log-normal relaxed clock model, and two secondary calibrations under normal prior distributions. Shaded horizontal bars show the 95 % highest posterior densities of divergence times and stars indicate nodes used for secondary calibration. Bayesian posterior support values >50 % are given at each node. (PDF 31 kb)

Fig. S7

Ancestral state reconstructions of main climatic PCs for Menonvillea. X-axis represents divergence times (My) and the y-axis represents the reconstructed character values based on PC scores. Species of sects. Cuneata, Scapigera, and Menonvillea are colored in red, green, and blue, respectively. (PDF 51 kb)

ESM 1

(DOCX 20 kb)

ESM 2

(DOCX 18 kb)

ESM 3

(XLSX 99 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salariato, D.L., Zuloaga, F.O. Climatic niche evolution in the Andean genus Menonvillea (Cremolobeae: Brassicaceae). Org Divers Evol 17, 11–28 (2017). https://doi.org/10.1007/s13127-016-0291-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-016-0291-5

Keywords

Navigation