Skip to main content

Advertisement

Log in

Sedimentology-based reconstructions of paleoclimate changes in the Central Andes in response to the uplift of the Andes, Arica region between 19 and 21°S latitude, northern Chile

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

We focus on the sedimentological record of the Middle Miocene to modern deposits in the Andes of northern Chile between 19 and 21°S. These sediments, deposited at the Western Escarpment of the Central Depression, indicate successively more moisture on the western margin of the Altiplano and the Western Cordillera where the sources are. At the Pacific Coast, 20-Ma-old exposure ages and salic gypsisols reflect an existing and ongoing hyperarid climate. We interpret the increased divergence of climates between the Coast and the Altiplano as consequence of the Andean rise to elevations higher than approximately 2,500 m a.s.l., when the topography of the Altiplano was sufficiently high and areally extensive to attract Atlantic moisture. Accordingly, the inferred general increase in run-off was closely coupled with the uplift of the Andes if the steady rise model applies. In case that the rapid rise model for Andean uplift is correct, the inferred changes in sediment transport would have occurred independently of uplift, requiring an alternative, yet unknown driver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Allmendinger RW, Jordan TE, Kay SM, Isacks B (1997) The evolution of the Altiplano-Puna plateau of the Central Andes. Ann Rev Earth Planet Sci 25:139–174

    Article  Google Scholar 

  • Allmendinger RW, González G, Yu J, Hoke G, Isacks B (2005) Trench-parallel shortening in the northern Chilenean Forearc: tectonic and climatic implications. Geol Soc Am Bull 117:9–104

    Google Scholar 

  • Alpers CN, Brimhall GH (1988) Middle Miocene climatic change in the Atacama Desert, northern Chile; evidence from supergene mineralization at La Escondida. Geol Soc Am Bull 100:1640–1656

    Article  Google Scholar 

  • Arancibia G, Matthews SJ, Pérez de Arce C (2006) K-Ar an 40Ar/39Ar geochronology of supergene processes in the Atacama Desert, Northern Chile: tectonic and climatic relations. J Geol Soc London 163:107–118

    Article  Google Scholar 

  • Barnes JB, Ehlers TA (2009) End member models for Andean Plateau uplift. Earth-Sci Rev 97:105–132

    Article  Google Scholar 

  • Barnes JD, Ehlers TA, McQuarrie N, O’Sullivan PB, Pelletier JD (2006) Eocene to recent variations in erosion across the central Andes fold-thrust belt, northern Bolivia: implications for plateau evolution. Earth Planet Sci Lett 248:8–133

    Article  Google Scholar 

  • Bershaw J, Garzione CN, Higgins P, MacFadden BJ, Anaya F, Alvarenga H (2010) Spatial-temporal changes in Andean plateau climate and elevation from stable isotopes of mammal teeth. Earth Planet Sci Lett 289:530–538

    Article  Google Scholar 

  • Blair TC (1999a) Sedimentary processes and facies of the waterlaid Anvil Spring Canyon alluvial fan, Death Valley, California. Sedimentology 46:913–940

    Article  Google Scholar 

  • Blair TC (1999b) Sedimentology of the debris-flow-dominated Warm Spring Canyon alluvial fan, Death Valley, California. Sedimentology 46:941–965

    Article  Google Scholar 

  • Bookhagen B, Strecker M (2008) Orographic barriers, high-resolution TRMM rainfall, and relief variations along the eastern Andes. Geophys Res Lett 35:L06403

    Article  Google Scholar 

  • Clarke JDA (2006) Antiquity of aridity in the Chilean Atacama Desert. Geomorphology 73:101–114

    Article  Google Scholar 

  • Dunai TJ, González López GA, Juez-Larré J (2005) Oligocene/Miocene age of aridity in the Atacama Desert revealed by exposure dating of erosion sensitive landforms. Geology 33:321–324

    Article  Google Scholar 

  • Ege H, Sobel ER, Scheuber E, Jacobshagen V (2007) Exhumation history of the southern Altiplano plateau (southern Bolivia) constrained by apatite fission track thermochronology. Tectonics 26:TC1004

    Article  Google Scholar 

  • Ehlers TA, Poulsen CJ (2009) Influence of Andean uplift on climate and paleoaltimetry estimates. Earth Planet Sci Lett 281:238–248

    Article  Google Scholar 

  • Evenstar LA, Hartley AJ, Stuart FM, Mather AE, Rice CM, Chong G (2009) Multiphase development of the Atacama planation surface recorded by cosmogenic 3He exposure ages: implications for uplift and Cenzoic climate change in western South America. Geology 37:27–30

    Article  Google Scholar 

  • Farías M, Charrier F, Comte D, Martinod J, Hérail G (2005) Late Cenozoic deformation and uplift of the western flank of the Altiplano: evidence from the depositional, tectonic, and geomorphic evolution and shallow seismic activity (northern Chile at 19°30′S). Tectonics 24:TC4001

    Article  Google Scholar 

  • Friend P (1983) Towards the field classification of alluvial architecture or sequence. In: Collinson JD, Lewin J (eds) Modern and ancient fluvial systems. Int Assoc Sed Spec Publ 6:345–354

  • García M (2002) Evolution Oligo-Miocène de l’Altiplano occidental (arc et avant-arc du nord du Chili, Arica): Tectonique, volcanism, sédimentation, géomorphologie et bilan érosion-sédimentation. Géologie Alpine, Laboratoire de Géodynamique des Chaînes Alpines, Université Joseph Fourier—Grenoble 1, pp 118

  • García M, Hérail G (2005) Fault-related folding, drainage network evolution and valley incision during the Neogene in the Andean Precordillera of Northern Chile. Geomorphology 65:279–300

    Article  Google Scholar 

  • García M, Hérail G, Charretier R (1996) The Cenozoic forearc evolution in northern Chile: the western border of the Altiplano of Belén (Chile). In: 3rd international symposium of Andean geodynamics, Saint-Malo, pp 359–362

  • Garreaud R, Vuille M, Clement AC (2003) The climate of the Altiplano: observed current conditions and mechanisms of past changes. Paleog Paleocl Paleoec 194:5–22

    Article  Google Scholar 

  • Garzione CN, Molnar P, Libarkin J, MacFadden B (2006) Rapid late Miocene rise of the Bolivian Altiplano: evidence for removal of mantle lithosphere. Earth Planet Sci Lett 241:543–556

    Article  Google Scholar 

  • Garzione CN, Hoke GD, Libarkin JC, Whiters S, MacFadden B, Eiler J, Ghosh P, Mulch A (2008) Rise of the Andes. Science 320:1304–1307

    Article  Google Scholar 

  • Gaupp R, Kött A, Wörner G (1999) Palaeoclimatic implications of Mio-Pliocene sedimentation in the high-altitude intra-arc Lauca Basin of northern Chile. Paleog Paleocl Paleoec 151:79–100

    Article  Google Scholar 

  • Ghosh P, Garzione C, Eiler JM (2006) Rapid uplift of the Altiplano revealed through 13C–18O bonds in paleosol coarbonates. Science 311:511–515

    Article  Google Scholar 

  • Gillis RJ, Horton BK, Grove M (2006) Thermochronology, geochronology and upper crustal structure of the Cordillera Real: implications for Cenozoic exhumation history of the central Andean Plateau. Tectonics 25:TC6007

    Article  Google Scholar 

  • Gregory-Wodzicki KM, Mcintosh WC, Velasquez K (1998) Climate and tectonic implications of the late Miocene Jakokkota flora, Bolivian Altiplano. J South Am Earth Sci 11:533–560

    Article  Google Scholar 

  • Hartley AJ (2003) Andean uplift and climate change. J Geol Soc London 160:7–10

    Article  Google Scholar 

  • Hartley AJ, Chong G (2002) Late Pliocene age for the Atacama Desert: implications for the desertification of western South America. Geology 30:43–46

    Article  Google Scholar 

  • Hartley AJ, Rice C (2005) Controls on supergene enrichment of porphyry copper deposits in the Central Andes: a review and reinterpretation. Miner Depos 40:515–525

    Article  Google Scholar 

  • Hoke GD, Isacks BL, Jordan TE, Yu JS (2004) Groundwater-sapping origin for the giant quebradas of northern Chile. Geology 32:605–608

    Article  Google Scholar 

  • Hoke GD, Isacks BL, Jordan TE, Tomlinson AJ, Blanco Pavez N, Razmezani J (2007) Geomorphic evidence for post-10 Ma uplift of the western flank of the central Andes 18°30′-22′S. Tectonics 26:TC5021

    Article  Google Scholar 

  • Houston J, Hartley A (2003) The central Andean west-slope rainshadow and its potential contribution to the origin of hyper-aridity in the Atacma desert. Int J Climatol 23:1453–1464

    Article  Google Scholar 

  • Insel J, Poulsen CJ, Ehlers T (2010) Influence of the Andes mountains on South American moisture transport, convection and precipitation. Clim Dyn. doi:10.1007/s00382-009-0637-1

  • Isacks BL (1988) Uplift of the Central Andean plateau and bending of the Bolivian orocline. J Geophys Res 93:3211–3231

    Article  Google Scholar 

  • Kiefer E, Dörr MJ, Ibbeken H, Götze H-J (1997) Gravity-based mass balance of an alluvial fan giant: the Arcas fan, Pampa del Tamarugal, northern Chile. Rev Geol Chile 24:165–185

    Google Scholar 

  • Kober F, Schlunegger F, Zeilinger G, Schneider H (2006) Surface uplift and climate change: the geomorphic evolution of the Western Escarpment of the Andes of northern Chile between the Miocene and the present. In: Willett SD, Hovius N, Brandon MT, Fischer F (eds) Tectonics, climate and landscape evolution. Geol Soc Amer Spec Paper 398:75–86

  • Kober F, Ivy-Ochs S, Schlunegger F, Baur H, Kubik PW, Wieler R (2007) Denudation rates and a topography-driven rainfall threshold in northern Chile: multiple cosmogenic nuclide data and sediment budgets. Geomorphology 83:97–120

    Article  Google Scholar 

  • Kohler I (1999) Syntektonische kontinentale Sedimentation auf der Westabdachung der Anden Nordchiles (18° bis 19°S). Profil 17:1–165. Univ Stuttgart

    Google Scholar 

  • Lamb S, Davis P (2003) Cenozoic climate change as a possible cause for the rise of the Andes. Nature 425:792–796

    Article  Google Scholar 

  • Lenters JD, Cook KH (1995) Simulation and diagnosis of the regional summertime precipitation climatology of South America. J Climate 8:2988–3005

    Article  Google Scholar 

  • Mamani M, Wörner G, Sempere T (2010) Geochemical variations in igneous rocks of the Central Andean orocline (13°S to 18°S): tracing crustal thickening and magma generation through time and space. Geol Soc Am Bull 122:162–182

    Article  Google Scholar 

  • McQuarrie N, Horton BK, Zandt G, Beck S, DeCelles PG (2005) Lithosperic evolution of the Andean fold-thrust belt, Bolivia, and the origin of the central Andean plateau. Tectonophysics 399:15–37

    Article  Google Scholar 

  • McQuarrie N, Ehlers TA, Barnes JB, Meade B (2008) Temporal variation in climate and tectonic coupling in the central Andes. Geology 36:999–1002

    Article  Google Scholar 

  • Miall AD (1985) Architectural-element analysis: a new method of facies analysis applied to fluvial deposits. Earth-Sci Rev 22:261–308

    Article  Google Scholar 

  • Mulch A, Cornelius U, Strecker M, Schoenberg R, Chamberlain CP (2010) Late Miocene climate variability and surface elevation in the central Andes. Earth Planet Sci Lett 290:173–182

    Article  Google Scholar 

  • Muñoz N, Sepúlveda P (1992) Estructuras compresivas con vergencia al oeste en el borde oriental de la Depresión Central, Norte de Chile (19°15′S). Revi Geol Chile 19:241–247

    Google Scholar 

  • Nalpas T, Dabard M-P, Ruffet G, Vernon A, Mpodozis C, Loi A, Hérail G (2008) Sedimentation and preservation of the Miocene Atacama Gravels in the Pedernales-Chañaral Area, Northern Chile: climatic or tectonic control? Tectonophysics 459:161–173

    Article  Google Scholar 

  • Naranjo J, Paskoff R (1985) Evolución cenozoica del piedemonte andino en la Pampa del Tamarugal, norte de Chile (18°–21°S). Congreso Geológico Chileno 4:149–165, Antofagasta

  • Nemec W, Postma G (1993) Quaternary alluvial fans in southwestern Crete: sedimentation processes and geomorphic evolution. In: Marzo M, Puigdefábregas M (eds) Alluvial sedimentation, vol 17. IAS Special Publication, pp 235–276

  • Nishiizumi K, Caffee MW, Finkel RC, Brimhall G, Mote T (2005) Remnants of a fossil alluvial fan landscape of Miocene age in the Atacama Desert of northern Chile using cosmogenic nuclide exposure age dating. Earth Planet Sci Lett 237:499–507

    Article  Google Scholar 

  • Parraguez G (1998) Sedimentología y geomorfología producto de la tectónica cenozoica, en la Depresión Central, I Región de Tarapacá, Chile. Mem Título thesis Univ Chile, p 108

  • Pinto L, Hérail G, Charrier R (2004) Sedimentatión sintectónica a las estructuras neógenas en la Precordillera de la zona de Moquella, Tarapacá (19°15′S, norte de Chile). Rev Geol Chile 31:19–44

    Article  Google Scholar 

  • Platt NH (1992) Freshwater carbonates from the Lower Freshwater Molasse (Oligocene, western Switzerland): sedimentology and stable isotopes. Sediment Geol 78:81–99

    Article  Google Scholar 

  • Rech JA, Currie BS, Michalski G, Cowan AM (2006) Neogene climate change and uplift in the Atacama Desert, Chile. Geology 34:761–764

    Article  Google Scholar 

  • Reich M, Palacios C, Vargas G, Luo S, Cameron EM, Leybourne MI, Parada MA, Zúñiga A, You C-F (2009) Supergene enrichment of copper deposits since the onset of modern hyperaridity in the Atacama Desert, Chile. Miner Deposita 44:497–504

    Article  Google Scholar 

  • Rust B (1978) Depositional models for braided alluvium. In: Miall AD (ed) Fluvial sedimentology. Mem Can Soc Pet Geol 5:605–625

  • Salino P, Nicolini M, Saulo AC (2002) Chaco low-level jet events characterization during the austral summer season. J Geophys Res 107: NO. D24

  • Salinas P, Villaroel C, Marshall L, Sepulveda P, Muñoz N (1991) Typotheriopsis sp. (Notoungulata Mesotheriidae), mamifero del Miocene superior en las cercanias Belén, Arcia, Norte de Chile. Congr Geol. Chileno, Resumen, pp 314–317

  • Schildgen TF, Hodges KV, Whipple KW, Reiners PW, Pringle MS (2007) Uplift of the western margin of the Andean plateau revealed from canyon incision history, southern Peru. Geology 35:523–526

    Article  Google Scholar 

  • Schlunegger F, Zeilinger G, Kounov A, Kober F, Hüsser B (2006) Scale of relief growth in the Andes of northern Chile. Terra Nova 18:217–223

    Article  Google Scholar 

  • Sepulchre P, Snyder M, Sloan LC (2010) Impact of Andean Uplift on the Humboldt Current System: a climate model sensitivity study. Paleoceanography (in press)

  • Sillitoe RH, McKee H (1996) Age of supergene oxidation and enrichment in the Chilenean porphyry copper province. Econ Geol 91:164–179

    Article  Google Scholar 

  • Steffen D, Schlunegger F, Preusser F (2009) Drainage basin response to climate change in the Pisco valley, Peru. Geology 37:491–494

    Article  Google Scholar 

  • Strecker MR, Alonso RN, Bookhagen B, Carrapa B, Hilley GE, Sobel ER, Trauth MH (2007) Tectonics and climate of the southern Central Andes. Ann Rev Earth Planet Sci 35:747–787

    Article  Google Scholar 

  • Thouret J-C, Wörner G, Gunnell Y, Singer B, Zhang X, Souriot T (2007) Geochronologic and stratigraphic constraints on canyon incision and Miocene uplift of the Central Andes in Peru. Earth Planet Sci Lett 263:151–166

    Article  Google Scholar 

  • Uba CE, Strecker M, Schmitt AK (2007) Increased sediment accumulation rates and climate forcing in the central Andes during the late Miocene. Geology 35:979–982

    Article  Google Scholar 

  • Victor P, Oncken O, Glodny J (2004) Uplift of the western Altiplano plateau: evidence from the Precordillera between 20° and 21°S (northern Chile). Tectonics 23:TC4004

    Article  Google Scholar 

  • Von Rotz R, Schlunegger F, Heller F (2005) Assessing the age of relief growth in the Andes of northern Chile: magneto-polarity chronologies from Neogene continental sections. Terra Nova 17:462–471

    Article  Google Scholar 

  • Walfort B, Hammerschmidt K, Wörner G (1995) New Ar/Ar ages from Tertiary volcanics in the northern Chilenean Andes (18°S): implication for tectonic and magmatic evolution. Terra Nova Abstr 7:354

    Google Scholar 

  • Wörner G, Hammerschmidt K, Henjes-Kunst F, Lezaun J, Wilke H (2000) Geochronology (40Ar/39Ar, K–Ar and He-exposure ages) of Cenozoic magmatic rocks from northern Chile (18–22°S): implications fro magmatism and tectonic evolution of the central Andes. Rev Geol Chile 27:205–240

    Google Scholar 

  • Wörner G, Uhlig D, Kohler I, Seyfried H (2002) Evolution of the West Andean Escarpment at 18°S (N. Chile) during the last 25 Ma: uplift, erosion and collapse through time. Tectonophysics 345:183–198

    Article  Google Scholar 

  • Zeilinger G, Schlunegger F, Simpson F (2005) The Oxaya anticline (northern Chile): a buckle enhanced by river incision? Terra Nova 17:368–375

    Article  Google Scholar 

Download references

Acknowledgments

Research was funded through NSF project 20021 awarded to Schlunegger. The very constructive reviews of an earlier version of this manuscript by T. Jordan, G. Hoke, A. Mulch, A. Hartley, and N. Gasparini substantially improved the science of this paper and are kindly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fritz Schlunegger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlunegger, F., Kober, F., Zeilinger, G. et al. Sedimentology-based reconstructions of paleoclimate changes in the Central Andes in response to the uplift of the Andes, Arica region between 19 and 21°S latitude, northern Chile. Int J Earth Sci (Geol Rundsch) 99 (Suppl 1), 123–137 (2010). https://doi.org/10.1007/s00531-010-0572-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-010-0572-8

Keywords

Navigation