Skip to main content
Log in

Dispelling five myths about hypothesis testing in biological systematics

  • Original Article
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

The emphasis on testing phylogenetic hypotheses has been prominent since the English language introductions of Willi Hennig’s Phylogenetic Systematics (1966) and Karl Popper’s (1959) Logic of Scientific Discovery. While the mechanics of hypothesis and theory testing are well established in other fields of science, adherence to those prescriptions in biological systematics has rarely been formally recognized. The consequence has been the development of potentially contradictory approaches to empirically evaluating phylogenetic hypotheses under the guise of testing. In his brief review of the topic, Assis (Cladistics, 30:240–242, 2014) identified five different views on phylogenetic hypothesis testing: (1) total evidence, (2) taxonomic congruence, (3) reciprocal illumination, (4) homology assessment, and (5) taxa sampling. The present paper examines the validity of these views against the actual inferential steps required to infer hypotheses and subsequently engage in testing, i.e., abduction, deduction, and induction (sensu stricto), respectively. It is shown that none of the tests discussed by Assis are valid, and while it is straightforward to outline what is required to properly test phylogenetic hypotheses, the feasibility of accomplishing such tests is operationally impractical in most instances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. For other classes of why-questions applicable to systematics and answered by way of abduction, see Fitzhugh (2012: Table 1, 2013: Table 1).

  2. The use of homogeny instead of homology follows Lankester’s (1870; Fitzhugh 2006a) suggestions, discussed later (Homology assessment).

  3. In those instances in which a common cause theory is not used in lieu of substitution rates factored into the theoretical make up of an abductive inference, one would have to take into account all additional instances of novel character origin/fixation “along branches.” This would necessitate considering the individual testing of each and every hypothesis of events making up such “branch lengths,” which is likely to be operationally unfeasible given what is required to properly test those hypotheses.

  4. This presupposition is often violated when sequence data are considered because rates of substitution are introduced as part of the phylogenetic theory. This is an instance of interjecting background knowledge at the incorrect juncture in inquiry. Consideration of rates of substitution would have to be applied at the point one considers their observation statements. What might appear to be shared characters would require reinterpretation per the assumption that evolutionary rates can obfuscate perceptions. Once those corrections are made, revised observation statements of shared similarities would lead to why-questions that are again answered by use of a common-cause theory similar to that shown in [4].

  5. For the remainder of this section, references to the testing of “homology” will be replaced with what is the appropriate term, homologue, to avoid perpetuating conflation of the two terms.

References

  • Achinstein, P. (1970). Inference to scientific laws. In R. H. Stuewer (Ed.), Volume V: historical and philosophical perspectives of science. Minnesota Studies in the Philosophy of Science (pp. 87–111). Minneapolis: University of Minnesota Press.

    Google Scholar 

  • Achinstein, P. (2001). The Book of Evidence. New York: Oxford University Press.

    Book  Google Scholar 

  • Aliseda, A. (2006). Abductive reasoning: logical investigations into discovery and explanation. Dordrecht: Springer.

    Google Scholar 

  • Ariew, A. (2003). Ernst Mayr’s ‘ultimate/proximate’ distinction reconsidered and reconstructed. Biology and Philosophy, 18, 553–565.

    Article  Google Scholar 

  • Assis, L. C. S. (2014). Testing evolutionary hypotheses: from Willi Hennig to Angiosperm Phylogeny Group. Cladistics, 30, 240–242.

    Article  Google Scholar 

  • Baker, V. R. (1996). Hypotheses and geomorphological reasoning. In B. L. Rhoads & C. E. Thorn (Eds.), The Scientific Nature of Geomorphology: Proceedings of the 27th Binghamton Symposium in Geomorphology held 27–29 September 1996 (pp. 57–85). New York: John Wiley & Sons.

    Google Scholar 

  • Barker, S. F. (1957). Induction and Hypothesis. New York: Cornell University Press.

    Google Scholar 

  • Barnes, E. (1994). Why P rather than Q? The curiosities of fact and foil. Philosophical Studies, 73, 35–53.

    Article  Google Scholar 

  • Beatty, J. (1994). The proximate/ultimate distinction in the multiple careers of Ernst Mayr. Biology and Philosophy, 9, 333–356.

    Article  Google Scholar 

  • Ben-Menahem, Y. (1990). The inference to the best explanation. Erkenntnis, 33, 319–344.

    Article  Google Scholar 

  • Bremer, K. (1988). The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution, 42, 795–803.

    Article  CAS  Google Scholar 

  • Bremer, K. (1994). Branch support and tree stability. Cladistics, 10, 295–304.

    Article  Google Scholar 

  • Bromberger, S. (1966). Why-questions. In R. G. Colodny (Ed.), Mind and cosmos: essays in contemporary science and philosophy. University of Pittsburgh Series in the Philosophy of Science, 3 (pp. 86–111). University of Pittsburgh Press.

  • Brower, A. V. Z., & de Pinna, M. C. C. (2012). Homology and errors. Cladistics, 28, 529–538.

    Article  Google Scholar 

  • Brower, A. V. Z., & Schawaroch, V. (1996). Three steps of homology assessment. Cladistics, 12, 265–272.

    Google Scholar 

  • Burton, R. B. (2000). The problem of control in abduction. Transactions of the Charles S. Peirce Society, 36, 149–156.

  • Carnap, R. (1950). Logical Foundations of Probability. University of Chicago Press.

  • Cleland, C. E. (2001). Historical science, experimental science, and the scientific method. Geology, 29, 987–990.

    Article  Google Scholar 

  • Cleland, C. E. (2002). Methodological and epistemic differences between historical science and experimental science. Philosophy of Science, 69, 474–496.

    Article  Google Scholar 

  • Cleland, C. E. (2009). Philosophical issues in natural history and historiography. In A. Tucker (Ed.), A Companion to the Philosophy of History and Historiography (pp. 44–62). Malden: Wiley-Blackwell.

    Chapter  Google Scholar 

  • Cleland, C. E. (2011). Prediction and explanation in historical natural science. British Journal for the Philosophy of Science, 62, 551–582.

    Article  Google Scholar 

  • Cleland, C. E. (2013). Common cause explanation and the search for a smoking gun. The Geological Society of America Special Papers, 502, 1–9.

    Article  Google Scholar 

  • Copi, I. M., & Cohen, C. (1998). Logic. PrenticeHall: Upper Saddle River.

    Google Scholar 

  • Curd, M. V. (1980). The logic of discovery: an analysis of three approaches. In T. Nickles (Ed.), Scientific Discovery, Logic and Rationality (pp. 201–219). Dordrecht: D. Reidel Publishing.

    Chapter  Google Scholar 

  • Davis, J. I. (1995). A phylogenetic structure for the monocotyledons, as inferred from chloroplast DNA restriction site variation, and a comparison of measures of clade support. Systematic Botany, 20, 503–527.

    Article  Google Scholar 

  • Dawid, R. (2013). String Theory and the Scientific Method. New York: Cambridge University Press.

    Book  Google Scholar 

  • de Pinna, M. C. C. (1991). Concepts and tests of homology in the cladistic paradigm. Cladistics, 7, 367–394.

    Article  Google Scholar 

  • de Queiroz, K. (2014). Popperian corroboration and phylogenetics. Systematic Biology, 63, 1018–1022.

    Article  PubMed  Google Scholar 

  • de Queiroz, K., & Poe, S. (2001). Philosophy and phylogenetic inference: a comparison of likelihood and parsimony methods in the context of Karl Popper’s writings on corroboration. Systematic Biology, 50, 305–321.

    Article  PubMed  Google Scholar 

  • de Queiroz, K., & Poe, S. (2003). Failed refutations: further comments on parsimony and likelihood methods and their relation-ship to Popper’s degree of corroboration. Systematic Biology, 52, 322–330.

    Google Scholar 

  • de Regt, H. W., & Dieks, D. (2005). A contextual approach to scientific understanding. Synthese, 144, 137–170.

    Article  Google Scholar 

  • de Regt, H. W., Leonelli, S., & Eigner, K. (2009). Focusing on scientific understanding. In H. de Regt, S. Leonelli, & K. Eigner (Eds.), Scientific understanding: philosophical perspectives (pp. 1–17). Pittsburgh: University of Pittsburgh Press.

    Google Scholar 

  • Desper, R., & Gascuel, O. (2002). Fast and accurate phylogeny reconstruction algorithms based on the minimum- evolution principle. Journal of Computational Biology, 9, 687–705.

    Article  CAS  PubMed  Google Scholar 

  • Douven, I. (2002). Testing inference to the best explanation. Synthese, 130, 355–377.

    Article  Google Scholar 

  • Efron, B. (1979). Bootstrap methods: another look at the jackknife. Annals of Statistics, 7, 1–26.

    Article  Google Scholar 

  • Efron, B., & Tibshirani, R. J. (1993). An Introduction to the Bootstrap. New York: Chapman & Hall.

    Book  Google Scholar 

  • Efron, B., Halloran, E., & Holmes, S. (1996). Bootstrap confidence levels for phylogenetic trees. Proceedings of the National Academy of Sciences, 93, 7085–7090.

    Article  CAS  Google Scholar 

  • Egan, M. G. (2006). Support versus corroboration. Journal of Biomedical Informatics, 39, 72–85.

    Article  CAS  PubMed  Google Scholar 

  • Eldredge, N., & Cracraft, J. (1980). Phylogenetic patterns and the evolutionary process: method and theory in comparative biology. New York: Columbia University Press.

    Google Scholar 

  • Faith, D. P. (2004). From species to supertrees: Popperian corroboration and some current controversies in systematics. Australian Systematic Botany, 17, 1–16.

    Article  Google Scholar 

  • Faith, D. P. (2006). Science and philosophy for molecular systematics: which is the cart and which is the horse? Molecular Phylogenetics and Evolution, 38, 553–557.

    Article  PubMed  Google Scholar 

  • Faith, D. P., & Cranston, P. S. (1992). Probability, parsimony, and Popper. Systematic Biology, 41, 252–257.

    Article  Google Scholar 

  • Faith, D. P., & Trueman, J. W. H. (2001). Towards an inclusive philosophy for phylogenetic inference. Systematic Biology, 50, 331–350.

    Article  CAS  PubMed  Google Scholar 

  • Faith, D. P., Köhler, F., Puslednik, L., & Ballard, J. W. O. (2011). Phylogenies with corroboration assessment. Zootaxa, 2946, 52–56.

    Google Scholar 

  • Fann, K. T. (1970). Peirce’s Theory of Abduction. The Hague: Martinus Nijhoff.

    Book  Google Scholar 

  • Farris, J. S. (1983). The logical basis of phylogenetic analysis. In N. I. Platnick & V. A. Funk (Eds.), Advances in Cladistics. Volume 2. Proceedings of the Second Meeting of the Willi Hennig Society (pp. 7–36). New York: Columbia University Press.

    Google Scholar 

  • Farris, J. S., Albert, V. A., Källersjö, M., Lipscomb, D., & Kluge, A. G. (1996). Parsimony jackknifing outperforms neighbor-joining. Cladistics, 12, 99–124.

    Article  Google Scholar 

  • Farris, J. S., Kluge, A. G., & Carpenter, J. M. (2001). Popper and likelihood versus “Popper*.”. Systematic Biology, 50, 438–444.

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein, J. (1981). Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution, 17, 368–376.

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39, 783–791.

    Article  Google Scholar 

  • Felsenstein, J. (1988). Phylogenies from molecular sequences: inference and reliability. Annual Review of Genetics, 22, 521–565.

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein, J. (2004). Inferring Phylogenies. Sunderland: Sinauer Associates.

    Google Scholar 

  • Fetzer, J. H. (1993). Philosophy of Science. New York: Paragon House.

    Google Scholar 

  • Fetzer, J. H., & Almeder, R. F. (1993). Glossary of Epistemology/Philosophy of Science. New York: Paragon House.

    Google Scholar 

  • Fitzhugh, K. (2005a). Les bases philosophiques de l’inférence phylogénétique: une vue d’ensemble. Biosystema, 24, 83–105.

    Google Scholar 

  • Fitzhugh, K. (2005b). The inferential basis of species hypotheses: the solution to defining the term ‘species.’. Marine Ecology, 26, 155–165.

    Article  Google Scholar 

  • Fitzhugh, K. (2006a). The abduction of phylogenetic hypotheses. Zootaxa, 1145, 1–110.

    Google Scholar 

  • Fitzhugh, K. (2006b). The ‘requirement of total evidence’ and its role in phylogenetic systematics. Biology and Philosophy, 21, 309–351.

    Article  Google Scholar 

  • Fitzhugh, K. (2006c). The philosophical basis of character coding for the inference of phylogenetic hypotheses. Zoologica Scripta, 35, 261–286.

    Article  Google Scholar 

  • Fitzhugh, K. (2008a). Fact, theory, test and evolution. Zoologica Scripta, 37, 109–113.

    Article  Google Scholar 

  • Fitzhugh, K. (2008b). Abductive inference: implications for ‘Linnean’ and ‘phylogenetic’ approaches for representing biological systematization. Evolutionary Biology, 35, 52–82.

    Article  Google Scholar 

  • Fitzhugh, K. (2008c). Clarifying the role of character loss in phylogenetic inference. Zoologica Scripta, 37, 561–569.

    Article  Google Scholar 

  • Fitzhugh, K. (2009). Species as explanatory hypotheses: refinements and implications. Acta Biotheoretica, 57, 201–248.

    Article  PubMed  Google Scholar 

  • Fitzhugh, K. (2010). Evidence for evolution versus evidence for intelligent design: parallel confusions. Evolutionary Biology, 37, 68–92.

    Article  Google Scholar 

  • Fitzhugh, K. (2012). The limits of understanding in biological systematics. Zootaxa, 3435, 40–67.

    Google Scholar 

  • Fitzhugh, K. (2013). Defining ‘species’, ‘biodiversity’, and ‘conservation’ by their transitive relations. In I. Y. Pavlinov (Ed.), The Species Problem – Ongoing Problems (pp. 93–130). New York: InTech.

    Google Scholar 

  • Fitzhugh, K. (2014). Character mapping and cladogram comparison versus the requirement of total evidence: does it matter for polychaete systematics? Memoirs of Museum Victoria, 71, 67–78.

    Google Scholar 

  • Fitzhugh, K. (2015). What are species? Or, on asking the wrong question. The Festivus, 47, 229–239.

  • Fitzhugh, K. (2016). Sequence data, phylogenetic inference, and implications of downward causation. Acta Biotheoretica (in press).

  • Franz, N. M. (2005). Outline of an explanatory account of cladistic practice. Biology and Philosophy, 20, 489–515.

    Article  Google Scholar 

  • Gaffney, E. S. (1979). An introduction to the logic of phylogeny reconstruction. In J. Cracraft & N. Eldredge (Eds.), Phylogenetic Analysis and Paleontology. New York: Columbia University Press.

    Google Scholar 

  • Godfrey-Smith, P. (2003). Theory and reality: an introduction to the philosophy of science. University of Chicago Press.

  • Grandcolas, P., Deleporte, P., & Desutter-Grandcolas, L. (1997). Testing evolutionary processes with phylogenetic patterns: test power and test limitations. In P. Grandcolas (Ed.), The Origin of Biodiversity in Insects: Phylogenetic Tests of Evolutionary Scenarios. Mémoires du Muséum National d’Histoire Naturelle, 173, 53–71.

  • Grant, T., & Kluge, A. G. (2008). Clade support measures and their adequacy. Cladistics, 24, 1051–1064.

    Article  Google Scholar 

  • Guindon, S., & Gascuel, O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology, 52, 696–704.

    Article  PubMed  Google Scholar 

  • Hacking, I. (2001). An Introduction to Probability and Inductive Logic. New York: Cambridge University Press.

    Book  Google Scholar 

  • Hanson, N. R. (1958). Patterns of discovery: an inquiry into the conceptual foundations of science. New York: Cambridge University Press.

    Google Scholar 

  • Harman, G. H. (1965). Inference to the best explanation. The Philosophical Review, 74, 88–95.

    Article  Google Scholar 

  • Hausman, D. M. (1998). Causal Asymmetries. New York: Cambridge University Press.

    Book  Google Scholar 

  • Hawkins, J. A., Hughes, C. E., & Scotland, R. W. (1997). Primary homology assessment, characters and character states. Cladistics, 13, 275–283.

    Article  Google Scholar 

  • Heath, T. A., Hedtke, S. M., & Hillis, D. M. (2008). Taxon sampling and the accuracy of phylogenetic analysis. Journal of Systematics and Evolution, 46, 239–257.

    Google Scholar 

  • Helfenbein, G. K., & DeSalle, R. (2005). Falsifications and corroborations: Karl Popper’s influence on systematics. Molecular Phylogenetics and Evolution, 35, 271–280.

    Article  PubMed  Google Scholar 

  • Hempel, C. G. (1962). Deductive nomological vs. statistical explanation. In H. Feigl & G. Maxwell (Eds.), Minnesota Studies in the Philosophy of Science, Volume 3 (pp. 98–169). Minneapolis: University of Minnesota Press.

    Google Scholar 

  • Hempel, C. G. (1965). Aspects of Scientific Explanation and Other Essays in the Philosophy of Science. New York: The Free Press.

    Google Scholar 

  • Hempel, C. G. (1966). Recent problems of induction. In R. G. Colodny (Ed.), Mind and Cosmos (pp. 112–134). Pittsburgh: University of Pittsburgh Press.

    Google Scholar 

  • Hempel, C. G. (2001). The philosophy of Carl G. Hempel: studies in science, explanation, and rationality. In J. H. Fetzer (Ed.). New York: Oxford University Press.

  • Hennig, W. (1966). Phylogenetic Systematics. Urbana: University of Illinois Press.

    Google Scholar 

  • Hillis, D. M. (1995). Approaches for assessing phylogenetic accuracy. Systematic Biology, 44, 3–16.

    Article  Google Scholar 

  • Hoffmann, M. (1999). Problems with Peirce’s concept of abduction. Foundations of Science, 4, 271–305.

    Article  Google Scholar 

  • Holmes, S. (2003). Bootstrapping phylogenetic trees: theory and methods. Statistical Science, 18, 241–255.

    Article  Google Scholar 

  • Hoyningen-Huene, P. (2013). Systematicity: the nature of science. New York: Oxford University Press.

    Book  Google Scholar 

  • Hull, D. L. (1974). Philosophy of Biological Science. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Jeffares, B. (2008). Testing times: regularities in the historical sciences. Studies in History and Philosophy of Biological and Biomedical Sciences, 39, 469–475.

    Article  PubMed  Google Scholar 

  • Josephson, J. R., & Josephson, S. G. (Eds.). (1994). Abductive inference: computation, philosophy, technology. New York: Cambridge University Press.

    Google Scholar 

  • Kelly, T. (2008). Common sense as evidence: against revisionary ontology and skepticism. Midwest Studies in Philosophy, 32, 53–78.

    Article  Google Scholar 

  • Kim, J. (1993). Improving the accuracy of phylogenetic estimation by combining different methods. Systematic Biology, 42, 331–340.

    Article  Google Scholar 

  • Kluge, A. G. (1989). A concern for evidence and a phylogenetic hypothesis of relationships among Epicrates (Boidae, Serpentes). Systematic Zoology, 38, 7–25.

    Article  Google Scholar 

  • Kluge, A. G. (1997a). Sophisticated falsification and research cycles: consequences for differential character weighting in phylogenetic systematics. Zoologica Scripta, 26, 349–360.

    Article  Google Scholar 

  • Kluge, A. G. (1997b). Testability and the refutation and corroboration of cladistic hypotheses. Cladistics, 13, 81–96.

    Article  Google Scholar 

  • Kluge, A. G. (1998). Total evidence or taxonomic congruence: cladistics or consensus classification. Cladistics, 14, 151–158.

    Article  Google Scholar 

  • Kluge, A. G. (1999). The science of phylogenetic systematics: explanation, prediction, and test. Cladistics, 15, 429–436.

    Article  Google Scholar 

  • Kluge, A. G. (2001). Philosophical conjectures and their refutation. Systematic Biology, 50, 322–330.

    Article  CAS  PubMed  Google Scholar 

  • Laland, K. N., Sterelny, K., Odling-Smee, J., Hoppitt, W., & Uller, T. (2011). Cause and effect in biology revisited: is Mayrs proximate-ultimate dichotomy still useful? Science, 334, 1512–1516.

    Article  CAS  PubMed  Google Scholar 

  • Lankester, E. R. (1870). II. – On the use of the term homology in modern zoology, and the distinction between homogenetic and homoplastic agreements. Annals and Magazine of Natural History, Series, 4(6), 34–43.

    Google Scholar 

  • Laubichler, M. D. (2014). Homology as a bridge between evolutionary morphology, developmental evolution, and phylogenetic systematics. In A. Hamilton (Ed.), The Evolution of Phylogenetic Systematics (pp. 63–85). Los Angeles: University of California Press.

    Google Scholar 

  • Lavelle, J. S., Botterill, G., & Lock, S. (2013). Contrastive explanation and the many absences problem. Synthese, 190, 3495–3510.

    Article  Google Scholar 

  • Lipton, P. (2004). Inference to the Best Explanation. New York: Routledge.

    Google Scholar 

  • Lipton, P. (2005). Testing hypotheses: prediction and prejudice. Science, 307, 219–221.

    Article  CAS  PubMed  Google Scholar 

  • Longino, H. E. (1979). Evidence and hypothesis: an analysis of evidential relations. Philosophy of Science, 46, 35–56.

    Article  Google Scholar 

  • Magnani, L. (2001). Abduction, reason, and science: processes of discovery and explanation. New York: Kluwer Academic.

    Book  Google Scholar 

  • Mahner, M., & Bunge, M. (1997). Foundations of Biophilosophy. New York: Springer.

    Book  Google Scholar 

  • Marwick, P. (1999). Interrogatives and contrasts in explanation theory. Philosophical Studies, 96, 183–204.

    Article  Google Scholar 

  • Mayo, D. G. (1991). Novel evidence and severe tests. Philosophy of Science, 58, 523–552.

    Article  Google Scholar 

  • Mayo, D. G. (1996). Error and the Growth of Experimental Knowledge. Chicago: The University of Chicago Press.

    Book  Google Scholar 

  • Mayo, D. G. (2005). Peircean induction and the error-correcting thesis. Transactions of the Charles S Peirce Society, 41, 299–319.

    Google Scholar 

  • Mayr, E. (1961). Cause and effect in biology. Science, 131, 1501–1506.

    Article  Google Scholar 

  • Mayr, E. (1982). The growth of biological thought: diversity, evolution, and inheritance. Cambridge: Harvard University Press.

    Google Scholar 

  • Mayr, E. (1993). Proximate and ultimate causation. Biology and Philosophy, 8, 95–98.

    Article  Google Scholar 

  • Mayr, E. (1994). Response to John Beatty. Biology and Philosophy, 9, 359–371.

    Article  Google Scholar 

  • McLaughlin, A. (1970). Rationality and total evidence. Philosophy of Science, 37, 271–278.

    Article  Google Scholar 

  • McMullin, E. (1995). The Inference That Makes Science. Milwaukee: Marquette University Press.

    Google Scholar 

  • Miller, J. A. (2003). Assessing progress in systematics with continuous jackknife function analysis. Systematic Biology, 52, 55–65.

    Article  PubMed  Google Scholar 

  • Minelli, A. (1994). Biological systematics: the state of the art. New York: Chapman & Hall.

    Book  Google Scholar 

  • Moritz, C., & Hillis, D. M. (1996). Molecular systematics: context and controversies. In D. M. Hillis, C. Moritz, & B. K. Mable (Eds.), Molecular Systematics (pp. 1–13). Sunderland: Sinauer Associates.

    Google Scholar 

  • Nabhan, A. R., & Sarkar, I. N. (2011). The impact of taxon sampling on phylogenetic inference: a review of two decades of controversy. Briefings in Bioinformatics, 13, 122–134.

    Article  PubMed  PubMed Central  Google Scholar 

  • Neta, R. (2008). What evidence do you have? The British Journal for the Philosophy of Science, 59, 89–119.

    Article  Google Scholar 

  • Nickles, T. (1980). Introductory essay: scientific discovery and the future of philosophy of science. In T. Nickles (Ed.), Scientific Discovery, Logic and Rationality (pp. 1–59). Dordrecht: D. Reidel Publishing Company.

    Chapter  Google Scholar 

  • Niiniluoto, I. (1999). Defending abduction. Philosophy of Science, 66, S436–S451.

    Article  Google Scholar 

  • Nixon, K. C., & Carpenter, J. M. (2012). On homology. Cladistics, 28, 160–169.

    Article  Google Scholar 

  • Nola, R., & Sankey, H. (2007). Theories of scientific method: an introduction. Ithaca: McGill–Queen’s University Press.

    Google Scholar 

  • Norton, J. D. (2003). A material theory of induction. Philosophy of Science, 70, 647–670.

    Article  Google Scholar 

  • Owen, R. (1843). Lectures on the Comparative Anatomy and Physiology of the Invertebrate Animals, Delivered at the Royal College of Surgeons, in 1843. London: Longman, Brown, Green, and Longmans.

    Google Scholar 

  • Owen, R. (1847). Report on the archetype and homologies of the vertebrate skeleton. Report of the British Association of the Advancement of Science for, 1846, 169–340.

    Google Scholar 

  • Owen, R. (1848). On the Archetype and Homologies of the Vertebrate Skeleton. London: Richard and John E. Taylor.

    Book  Google Scholar 

  • Owen, R. (1849). On the Nature of Limbs. A Discourse Delivered on Friday, February 9, at an Evening Meeting of the Royal Institution of Great Britain. London: John Van Voorst.

    Google Scholar 

  • Owen, R. (2007). On the Nature of Limbs. A Discourse. The University of Chicago Press.

  • Paavola, S. (2012). On the origin of ideas: an abductionist approach to discovery. Saarbrücken: Lap Lambert Academic Publishing.

    Google Scholar 

  • Patterson, C. (1982). Morphological characters and homology. In K. A. Joysey & A. E. Friday (Eds.), Problems of Phylogenetic Reconstruction (pp. 21–74). London: Academic Press.

    Google Scholar 

  • Peirce, C. S. (1878). Illustrations of the logic of science. Sixth paper.—Deduction, induction, and hypothesis. Popular Science Monthly, 13, 470–482.

    Google Scholar 

  • Peirce, C. S. (1883). A theory of probable inference. In C. S. Peirce (Ed.), The Johns Hopkins Studies in Logic (pp. 126–181). Boston: Little Brown and Co.

    Chapter  Google Scholar 

  • Peirce, C. S. (1902). Reasoning. In J. M. Baldwin & B. Rand (Eds.), Dictionary of Philosophy and Psychology: Prefatory Note. Text, Le-Z. Addenda: Indices. I. Greek Terms. II. Latin Terms. III. German Terms. IV. French Terms. V. Italian Terms (pp. 426–428). New York: The Macmillan Company.

    Google Scholar 

  • Peirce, C. S. (1931). Collected Papers of Charles Sanders Peirce, Volume 1, Principles of Philosophy. In C. Hartshorne, P. Weiss, & A. Burks (Eds.). Cambridge: Harvard University Press.

  • Peirce, C. S. (1932). Collected Papers of Charles Sanders Peirce, Volume 2, Elements of Logic. In C. Hartshorne, P. Weiss & A. Burks (Eds.). Cambridge: Harvard University Press.

  • Peirce, C. S. (1933a). Collected Papers of Charles Sanders Peirce, Volume 3, Exact Logic. In C. Hartshorne, P. Weiss, & A. Burks (Eds.). Cambridge: Harvard University Press.

  • Peirce, C. S. (1933b). Collected Papers of Charles Sanders Peirce, Volume 4, the Simplest Mathematics. In C. Hartshorne, P. Weiss, & A. Burks (Eds.). Cambridge: Harvard University Press.

  • Peirce, C. S. (1934). Collected Papers of Charles Sanders Peirce, Volume 5, Pragmatism and Pragmaticism. In C. Hartshorne, P. Weiss, & A. Burks (Eds.). Cambridge: Harvard University Press.

  • Peirce, C. S. (1935). Collected Papers of Charles Sanders Peirce, Volume 6, Scientific Metaphysics. In C. Hartshorne, P. Weiss, & A. Burks (Eds.). Cambridge: Harvard University Press.

  • Peirce, C. S. (1958a). Collected Papers of Charles Sanders Peirce, Volume 7, Science and Philosophy. In C. Hartshorne, P. Weiss, & A. Burks (Eds.). Cambridge: Harvard University Press.

  • Peirce, C. S. (1958b). Collected Papers of Charles Sanders Peirce, Volume 8, Correspondence and Bibliography. In A. Burks (Ed.). Cambridge: Harvard University Press.

  • Poe, S. (2003). Evaluation of the strategy of long-branch subdivision to improve the accuracy of phylogenetic methods. Systematic Biology, 52, 423–428.

    Article  PubMed  Google Scholar 

  • Popper, K. R. (1959). The logic of scientific discovery. New York: Basic Books.

    Google Scholar 

  • Popper, K. R. (1962). Conjectures and refutations: the growth of scientific knowledge. New York: Basic Books.

    Google Scholar 

  • Popper, K. R. (1971). The Open Society and its Enemies. Volume 2: Hegel and Marx. Princeton University Press.

  • Popper, K. R. (1983). Objective knowledge: an evolutionary approach. New York: Oxford University Press.

    Google Scholar 

  • Popper, K. R. (1988). The Poverty of Historicism. New York: Routledge.

    Google Scholar 

  • Popper, K. R. (1992). Realism and the Aim of Science. New York: Routledge.

    Google Scholar 

  • Psillos, S. (2002). Simply the best: a case for abduction. In A. C. Kakas & F. Sadri (Eds.), Computational logic: logic programming and beyond (pp. 605–625). New York: Springer.

    Chapter  Google Scholar 

  • Psillos, S. (2007). Philosophy of Science A–Z. Edinburgh: University Press.

    Google Scholar 

  • Psillos, S. (2011). An explorer upon untrodden ground: peirce on abduction. In D. Gabbay, S. Hartmann, & J. Woods (Eds.), The Handbook of the History of Logic. Volume 10: Inductive Logic (pp. 117–151). Oxford: Elsevier B. V.

    Google Scholar 

  • Rannala, B., Huelsenbeck, J. P., Yang, Z., & Nielsen, R. (1998). Taxon sampling and the accuracy of large phylogenies. Systematic Biology, 47, 702–710.

    Article  CAS  PubMed  Google Scholar 

  • Reilly, F. E. (1970). Charles Peirce’s Theory of Scientific Method. New York: Fordham University Press.

    Google Scholar 

  • Rescher, N. (1970). Scientific Explanation. New York: The Free Press.

    Google Scholar 

  • Rescher, N. (1978). Peirce’s philosophy of science: critical studies in his theory of induction and scientific method. University of Notre Dame Press.

  • Reynolds, P. D. (1971). A Primer in Theory Construction. Indianapolis: ITT Bobbs-Merrill Educational Publishing Company.

    Google Scholar 

  • Rieppel, O. (1988). Fundamentals of Comparative Biology. Boston: Birkhäuser Verlag.

    Google Scholar 

  • Rieppel, O. (2007). The performance of morphological characters in broad-scale phylogenetic analyses. Biological Journal of the Linnean Society, 92, 297–308.

    Article  Google Scholar 

  • Salmon, W. C. (1967). The Foundations of Scientific Inference. University of Pittsburgh Press.

  • Salmon, W. C. (1984a). Scientific Explanation and the Causal Structure of the World. Princeton University Press.

  • Salmon, W. C. (1984b). Logic. Englewood Cliffs: Prentice-Hall, Inc.

    Google Scholar 

  • Salmon, W. C. (1989). Four decades of scientific explanation. In P. Kitcher & W. C. Salmon (Eds.), Scientific Explanation. Minnesota Studies in the Philosophy of Science, Volume XIII (pp. 3–219). Minneapolis: University of Minnesota Press.

    Google Scholar 

  • Salmon, W. C. (1998). Causality and Explanation. New York: Oxford University Press.

    Book  Google Scholar 

  • Schuh, R. T. (2000). Biological systematics: principles and applications. Ithaca: Cornell University Press.

    Google Scholar 

  • Schuh, R. T., & Brower, A. V. Z. (2009). Biological systematics: principles and applications (2nd ed.). Ithaca: Cornell University Press.

    Google Scholar 

  • Schurz, G. (2005). Explanations in science and the logic of why-questions: discussion of the Halonen–Hintikka—approach and alternative proposal. Synthese, 143, 149–178.

    Article  Google Scholar 

  • Schurz, G. (2008). Patterns of abduction. Synthese, 164, 201–234.

    Article  Google Scholar 

  • Siddall, M. E., & Kluge, A. G. (1997). Probabilism and phylogenetic inference. Cladistics, 13, 313–336.

    Article  Google Scholar 

  • Sintonen, M. (2004). Reasoning to hypotheses: where do questions come? Foundation of Science, 9, 249–266.

    Google Scholar 

  • Sober, E. (1975). Simplicity. New York: Oxford University Press.

    Book  Google Scholar 

  • Sober, E. (1984). The nature of selection: evolutionary theory in philosophical focus. Cambridge: The MIT Press.

    Google Scholar 

  • Sober, E. (1986). Explanatory presupposition. Australasian Journal of Philosophy, 64, 143–149.

    Article  Google Scholar 

  • Sober, E. (1988). Reconstructing the past: parsimony, evolution, and inference. Cambridge: The MIT Press.

    Google Scholar 

  • Sober, E. (1994). From a biological point of view: essays in evolutionary biology. New York: Cambridge University Press.

    Book  Google Scholar 

  • Soltis, P. S., & Soltis, D. E. (2003). Applying the bootstrap in phylogeny reconstruction. Statistical Science, 18, 256–267.

    Article  Google Scholar 

  • Strahler, A. N. (1992). Understanding science: an introduction to concepts and issues. Buffalo: Prometheus Books.

    Google Scholar 

  • Thagard, P. (1988). Computational Philosophy of Science. Cambridge: The MIT Press.

    Google Scholar 

  • Thagard, P. (2004). Rationality and science. In A. Mele & P. Rawlings (Eds.), Handbook of Rationality (pp. 363–379). Oxford University Press.

  • Tucker, A. (2004). Our knowledge of the past: a philosophy of historiography. New York: Cambridge University Press.

    Book  Google Scholar 

  • Tucker, A. (2011). Historical science, over- and underdetermined: a study of Darwin’s inference of origins. British Journal for the Philosophy of Science, 62, 805–829.

    Article  Google Scholar 

  • Turner, D. (2007). Making prehistory: historical science and the scientific realism debate. New York: Cambridge University Press.

    Book  Google Scholar 

  • Van Fraassen, B. C. (1990). The Scientific Image. New York: Clarendon Press.

    Google Scholar 

  • Walton, D. (2004). Abductive Reasoning. Tuscaloosa: The University of Alabama Press.

    Google Scholar 

  • Wenzel, J. W. (1997). When is a phylogenetic test good enough? In: P. Grandcolas (Ed.), The Origin of Biodiversity in Insects: Phylogenetic Tests of Evolutionary Scenarios. Mémoires du Muséum National d’Histoire Naturelle, 173, 31–45.

  • Wheeler, Q. D. (2004). Taxonomic triage and the poverty of phylogeny. Philosophical Transactions of the Royal Society B, 359, 571–583.

    Article  Google Scholar 

  • Wheeler, Q. D. (2010). Do we need to describe, name, and classify all species? In D. M. Williams & S. Knapp (Eds.), Beyond cladistics: the branching of a paradigm (pp. 67–75). Berkeley: University of California Press.

    Google Scholar 

  • Wheeler, W. C. (2012). Systematics: a course of lectures. Oxford: Wiley–Blackwell.

    Book  Google Scholar 

  • Wheeler, Q., & Hamilton, A. (2014). The new systematics, the new taxonomy, and the future of biodiversity studies. In A. Hamilton (Ed.), The Evolution of Phylogenetic Systematics (pp. 287–301). Los Angeles: University of California Press.

    Google Scholar 

  • Wiens, J. J., & Servedio, M. R. (1997). Accuracy of phylogenetic analysis including and excluding polymorphic characters. Systematic Biology, 46, 332–345.

    Article  Google Scholar 

  • Wiley, E. O. (1975). Karl R. Popper, systematics, and classification: a reply to Walter Bock and other evolutionary taxonomists. Systematic Zoology, 24, 233–243.

    Article  Google Scholar 

  • Wiley, E. O., & Lieberman, B. S. (2011). Phylogenetics: theory and practice of phylogenetic systematics. Oxford: Wiley-Blackwell.

    Book  Google Scholar 

  • Williams, D. M., & Ebach, M. C. (2008). Foundations of Systematics and Biogeography. New York: Springer.

    Book  Google Scholar 

  • Williams, D. M., & Ebach, M. C. (2012). Confusing homologs as homologies: a reply to “On homology.”. Cladistics, 28, 223–224.

    Article  Google Scholar 

  • Worrall, J. (1989). Fresnel, Poisson and the white spot: the role of successful predictions in the acceptance of scientific theories. In D. Gooding, T. Pinch, & S. Schaffer (Eds.), The Uses of Experiment: Studies in the Natural Sciences (pp. 135–157). Cambridge University Press.

  • Zwickl, D. J., & Hillis, D. M. (2002). Increased taxon sampling greatly reduces phylogenetic error. Systematic Biology, 51, 588–598.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirk Fitzhugh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fitzhugh, K. Dispelling five myths about hypothesis testing in biological systematics. Org Divers Evol 16, 443–465 (2016). https://doi.org/10.1007/s13127-016-0274-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-016-0274-6

Keywords

Navigation