Skip to main content
Log in

On 20 years of Lophotrochozoa

  • Review
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

Lophotrochozoa is a protostome clade that includes disparate animals such as molluscs, annelids, bryozoans, and flatworms, giving it the distinction of including the most body plans of any of the three major clades of Bilateria. This extreme morphological disparity has prompted numerous conflicting phylogenetic hypotheses about relationships among lophotrochozoan phyla. Here, I review the current understanding of lophotrochozoan phylogeny with emphasis on recent insights gained through approaches taking advantage of high-throughput DNA sequencing (phylogenomics). Of significance, Platyzoa, a hypothesized clade of mostly small-bodied animals, appears to be an artifact of long-branch attraction. Recent studies recovered Gnathifera (Syndermata, Gnathostomulida, and Micrognathozoa) sister to all other lophotrochozoans and a clade called Rouphozoa (Platyhelminthes and Gastrotricha) sister to the remaining non-gnathiferan lophotrochozoans. Although Bryozoa was traditionally grouped with Brachiopoda and Phoronida (Lophophorata), most molecular studies have supported a clade including Entoprocta, Cycliophora, and Bryozoa (Polyzoa). However, recent phylogenomic work has shown that entoprocts and bryozoans have compositionally heterogeneous genomes that may cause systematic artifacts affecting their phylogenetic placement. Lastly, relationships within Trochozoa (Mollusca, Annelida, and relatives) largely remain ambiguous. Recent work has shown that phylogenomic studies must identify and reduce sources of systematic error, such as amino acid compositional heterogeneity and long-branch attraction. Still, other approaches such as the analysis of rare genomic changes may be needed to overcome challenges to standard phylogenomic approaches. Resolving lophotrochozoan phylogeny will provide important insight into how these complex and diverse body plans evolved and provide a much-needed framework for comparative studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aguinaldo, A. M. A., Turbeville, J. M., Linford, L. S., Rivera, M. C., Garey, J. R., Raff, R. A., & Lake, J. A. (1997). Evidence for a clade of nematodes, arthropods and other moulting animals. Nature, 387(6632), 489–493.

  • Ahlrichs, W. H. (1997). Epidermal ultrastructure of Seison nebaliae and Seison annulatus, and a comparison of epidermal structures within the Gnathifera. Zoomorphology, 117, 41–48.

    Article  Google Scholar 

  • Albertin, C. B., Simakov, O., Mitros, T., Wang, Z. Y., Pungor, J. R., Edsinger-Gonzales, E., Brenner, S., Ragsdale, C. W., & Rokhsar, D. S. (2015). The octopus genome and the evolution of cephalopod neural and morphological novelties. Nature, 524(7564), 220–224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altenburger, A., & Wanninger, A. (2010). Neuromuscular development in Novocrania anomala: evidence for the presence of serotonin and a spiralian‐like apical organ in lecithotrophic brachiopod larvae. Evolution & Development, 12(1), 16–24.

  • Anderson, F. E., Córdoba, A. J., & Thollesson, M. (2004). Bilaterian phylogeny based on analyses of a region of the sodium–potassium ATPase β-subunit gene. Journal of Molecular Evolution, 58(3), 252–268.

  • Andrade, S. C., Montenegro, H., Strand, M., Schwartz, M. L., Kajihara, H., Norenburg, J. L., Turbeville, J., Sunberg, P., & Giribet, G. (2014). A transcriptomic approach to ribbon worm systematics (Nemertea): resolving the Pilidiophora problem. Molecular Biology and Evolution, 31(12), 3206–3215.

    Article  CAS  PubMed  Google Scholar 

  • Andrade, S. C., Novo, M., Kawauchi, G. Y., Worsaae, K., Pleijel, F., Giribet, G., & Rouse, G. W. (2015). Articulating “archiannelids”: phylogenomics and annelid relationships, with emphasis on meiofaunal taxa. Molecular Biology and Evolution, msv157.

  • Ax, P. (1989). Basic phylogenetic systematization of the Metazoa. In B. Fernholm, K. Bremer, & H. Jornvall (Eds.), The hierarchy of life (pp. 229–245). Amsterdam: Elsevier.

    Google Scholar 

  • Ax, P. (2001). Das System der Metazoa III: ein Lehrbuch der phylogenetischen Systematik. Heidelberg: Spektrum Akademischer Verlag.

    Google Scholar 

  • Baguñà, J., Martinez, P., Paps, J., & Riutort, M. (2008). Back in time: a new systematic proposal for the Bilateria. Philosophical Transactions of the Royal Society, B: Biological Sciences, 363, 1481–1491.

    Article  PubMed Central  CAS  Google Scholar 

  • Bekkouche, N., Kristensen, R. M., Hejnol, A., Sørensen, M. V., & Worsaae, K. (2014). Detailed reconstruction of the musculature in Limnognathia maerski (Micrognathozoa) and comparison with other Gnathifera. Frontiers in Zoology, 11(1), 71.

    Article  PubMed  PubMed Central  Google Scholar 

  • Blanquart, S., & Lartillot, N. (2006). A Bayesian compound stochastic process for modeling nonstationary and nonhomogeneous sequence evolution. Molecular Biology and Evolution, 23(11), 2058–2071.

    Article  CAS  PubMed  Google Scholar 

  • Blanquart, S., & Lartillot, N. (2008). A site-and time-heterogeneous model of amino acid replacement. Molecular Biology and Evolution, 25(5), 842–858.

    Article  CAS  PubMed  Google Scholar 

  • Bleidorn, C., Podsiadlowski, L., Zhong, M., Eeckhaut, I., Hartmann, S., Halanych, K. M., & Tiedemann, R. (2009). On the phylogenetic position of Myzostomida: can 77 genes get it wrong? BMC Evolutionary Biology, 9, 150.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brocco, S. L., O’Clair, R. M., & Cloney, R. A. (1974). Cephalopod integument: the ultrastructure of Kölliker’s organs and their relationship to setae. Cell and Tissue Research, 151, 293–308.

    Article  CAS  PubMed  Google Scholar 

  • Brunet, T., Lauri, A., & Arendt, D. (2015). Did the notochord evolve from an ancient axial muscle? The axochord hypothesis. Bioessays, 37(8), 836–850.

    Article  PubMed  Google Scholar 

  • Brusca, R. C., & Brusca, G. J. (2003). Invertebrates. Sunderland: Sinauer Associates.

    Google Scholar 

  • Caron, J. B., Scheltema, A., Schander, C., & Rudkin, D. (2006). A soft-bodied mollusc with radula from the Middle Cambrian Burgess Shale. Nature, 442(7099), 159–163.

    Article  CAS  PubMed  Google Scholar 

  • Cavalier-Smith, T. (1998). A revised six-kingdom system of life. Biological Reviews, 73, 203–266.

    Article  CAS  PubMed  Google Scholar 

  • Cohen, B. L. (2000). Monophyly of brachiopods and phoronids: reconciliation of molecular evidence with Linnaean classification (the subphylum Phoroniformea nov.). Proceedings of the Royal Society of London, Series B: Biological Sciences, 267, 225–231.

    Article  CAS  Google Scholar 

  • Cohen, B. L. (2013). Rerooting the rDNA gene tree reveals phoronids to be “brachiopods without shells”; dangers of wide taxon samples in metazoan phylogenetics (Phoronida; Brachiopoda). Zoological Journal of the Linnean Society, 167, 82–92.

    Article  Google Scholar 

  • Cohen, B. L., & Weydmann, A. (2005). Molecular evidence that phoronids are a subtaxon of brachiopods (Brachiopoda: Phoronata) and that genetic divergence of metazoan phyla began long before the early Cambrian. Organisms, Diversity and Evolution, 5, 253–273.

    Article  Google Scholar 

  • Cohen, B. L., Gawthrop, A., & Cavalier-Smith, T. (1998). Molecular phylogeny of brachiopods and phoronids based on nuclear-encoded small subunit ribosomal RNA gene sequences. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 353, 2039–2061.

    Article  CAS  Google Scholar 

  • Criscuolo, A., & Gribaldo, S. (2010). BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evolutionary Biology, 10(1), 210.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Rosa, R., Grenier, J. K., Andreeva, T., Cook, C. E., Adoutte, A., Akam, M., Caroll, S. B., & Balavoine, G. (1999). Hox genes in brachiopods and priapulids and protostome evolution. Nature, 399(6738), 772–776.

    Article  CAS  PubMed  Google Scholar 

  • dos Reis, M., Thawornwattana, Y., Angelis, K., Telford, M. J., Donoghue, P. C., & Yang, Z. (2015). Uncertainty in the timing of origin of animals and the limits of precision in molecular timescales. Current Biology, 25, 2939–2950.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dunn, C. W., Hejnol, A., Matus, D. Q., Pang, K., Browne, W. E., Smith, S. A., et al. (2008). Broad phylogenomic sampling improves resolution of the animal tree of life. Nature, 452, 745–749.

    Article  CAS  PubMed  Google Scholar 

  • Dunn, C. W., Giribet, G., Edgecombe, G. D., & Hejnol, A. (2014). Animal phylogeny and its evolutionary implications*. Annual Review of Ecology, Evolution, and Systematics, 45, 371–395.

  • Edgecombe, G. D., Giribet, G., Dunn, C. W., Hejnol, A., Kristensen, R. M., Neves, R. C., Rouse, G. W., Worsaae, K., & Sørensen, M. V. (2011). Higher-level metazoan relationships: recent progress and remaining questions. Organisms, Diversity and Evolution, 11, 151.

    Article  Google Scholar 

  • Egger, B., Lapraz, F., Tomiczek, B., Müller, S., Dessimoz, C., Girstmair, J., Škunca, N., Rawlinson, K. A., Cameron, C. B., Beli, E., Todaro, M. A., Gammoudi, M., Noreña, C., & Telford, M. J. (2015). A transcriptomic-phylogenomic analysis of the evolutionary relationships of flatworms. Current Biology, 25(10), 1347–1353.

  • Emig, C. (1984). On the origin of the Lophophorata. Journal of Zoological Systematics and Evolutionary Research, 22(2), 91–94.

    Article  Google Scholar 

  • Faircloth, B. C., McCormack, J. E., Crawford, N. G., Harvey, M. G., Brumfield, R. T., & Glenn, T. C. (2012). Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales. Systematic Biology, 61(5), 717–726.

    Article  PubMed  Google Scholar 

  • Faircloth, B. C., Branstetter, M. G., White, N. D., & Brady, S. G. (2015). Target enrichment of ultraconserved elements from arthropods provides a genomic perspective on relationships among Hymenoptera. Molecular Ecology Resources, 15(3), 489–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuchs, J., Iseto, T., Hirose, M., Sundberg, P., & Obst, M. (2010). The first internal molecular phylogeny of the animal phylum Entoprocta (Kamptozoa). Molecular Phylogenetics and Evolution, 56, 370–379.

    Article  PubMed  Google Scholar 

  • Funch, P., & Kristensen, R. M. (1995). Cycliophora is a new phylum with affinities to Entoprocta and Ectoprocta. Nature, 378, 711–714.

    Article  CAS  Google Scholar 

  • Funch, P., Sørensen, M. V., & Obst, M. (2005). On the phylogenetic position of Rotifera—have we come any further? Hydrobiologia, 546, 11–28.

    Article  CAS  Google Scholar 

  • Garcia-Fernàndez, J., & Holland, P. W. H. (1994). Archetypal organization of the amphioxus Hox gene cluster. Nature, 370, 563–566.

    Article  PubMed  Google Scholar 

  • Gervais, M. (1837). Recherches sur les polypes d’eau douche des generes Plumatella, Cristatella, et. Paludicola. Annales des Sciences Naturelles Series 2, 7, 49–93.

    Google Scholar 

  • GIGA Community of Scientists, Bracken-Grissom, H., Collins, A. G., Collins, T., Crandall, K., Distel, D., Dunn, C., Giribet, G., Haddock, S., Knowlton, N., Martindale, M., Medina, M., Messing, C., O’Brien, S. J., Paulay, G., Putnam, N., Ravasi, T., Rouse, G. W., Ryan, J. F., Schulze, A., Wörheide, G., Adamska, M., Bailly, X., Breinholt, J., Browne, W. E., Diaz, M. C., Evans, N., Flot, J. F., Fogarty, N., Johnston, M., Kamel, B., Kawahara, A. Y., Laberge, T., Lavrov, D., Michonneau, F., Moroz, L. L., Oakley, T., Osborne, K., Pomponi, S. A., Rhodes, A., Santos, S. R., Satoh, N., Thacker, R. W., Van de Peer, Y., Voolstra, C. R., Welch, D. M., Winston, J., & Zhou, X. (2014). The Global Invertebrate Genomics Alliance (GIGA): developing community resources to study diverse invertebrate genomes. The Journal of Heredity, 105(1), 1–18.

    Article  PubMed Central  CAS  Google Scholar 

  • Giribet, G. (2008). Assembling the lophotrochozoan (=spiralian) tree of life. Philosophical Transactions of the Royal Society, B: Biological Sciences, 363, 1513–1522.

    Article  PubMed Central  Google Scholar 

  • Giribet, G. (2015). New animal phylogeny: future challenges for animal phylogeny in the age of phylogenomics. Organisms Diversity & Evolution. doi:10.1007/s13127-015-0235-4.

    Google Scholar 

  • Giribet, G., Distel, D. L., Polz, M., Sterrer, W., & Wheeler, W. C. (2000). Triploblastic relationships with emphasis on the acoelomates and the position of Gnathostomulida, Cycliophora, Plathelminthes, and Chaetognatha: a combined approach of 18S rDNA sequences and morphology. Systematic Biology, 49, 539–562.

    Article  CAS  PubMed  Google Scholar 

  • Giribet, G., Sørensen, M. V., Funch, P., Kristensen, R. M., & Sterrer, W. (2004). Investigations into the phylogenetic position of Micrognathozoa using four molecular loci. Cladistics, 20, 1–3.

    Article  Google Scholar 

  • Giribet, G., Dunn, C. W., Edgecombe, G. D., & Rouse, G. W. (2007). A modern look at the animal tree of life. Zootaxa, 1668, 61–79.

    Google Scholar 

  • Giribet, G., Dunn, C. W., Edgecombe, G. D., Hejnol, A., Martindale, M. Q., & Rouse, G. W. (2009). Assembling the spiralian tree of life. In M. J. Telford & D. T. J. Littlewood (Eds.), Animal evolution: genes, genomes, fossils and trees (pp. 52–64). Oxford: Oxford University Press.

    Chapter  Google Scholar 

  • Glenner, H., Hansen, A. J., Sørensen, M. V., Ronquist, F., Huelsenbeck, J. P., & Willerslev, E. (2004). Bayesian inference of the metazoan phylogeny: a combined molecular and morphological approach. Current Biology, 14, 1644–1649.

    Article  CAS  PubMed  Google Scholar 

  • Golombek, A., Tobergte, S., Nesnidal, M. P., Purschke, G., & Struck, T. H. (2013). Mitochondrial genomes to the rescue—Diurodrilidae in the myzostomid trap. Molecular Phylogenetics and Evolution, 68(2), 312–326.

    Article  CAS  PubMed  Google Scholar 

  • Golombek, A., Tobergte, S., & Struck, T. H. (2015). Elucidating the phylogenetic position of Gnathostomulida and first mitochondrial genomes of Gnathostomulida, Gastrotricha and Polycladida (Platyhelminthes). Molecular Phylogenetics and Evolution, 86, 49–63.

    Article  PubMed  Google Scholar 

  • González, V. L., Andrade, S. C., Bieler, R., Collins, T. M., Dunn, C. W., Mikkelsen, P. M., Taylor, J. D., & Giribet, G. (2015). A phylogenetic backbone for Bivalvia: an RNA-seq approach. Proceedings of the Royal Society of London B: Biological Sciences, 282(1801), 20142332.

    Article  CAS  Google Scholar 

  • Gonzalez-Cueto, J., Escarraga-Fajardo, M. E., Lagos, A. M., Quiroga, S., & Castro, L. R. (2015). The complete mitochondrial genome of Micrura ignea Schwartz & Norenburg 2005 (Nemertea: Heteronemertea) and comparative analysis with other nemertean mitogenomes. Marine Genomics, 20, 33–37.

    Article  PubMed  Google Scholar 

  • Gordon, D. P. (1975). The resemblance of bryozoan gizzard teeth to “annelid-like” setae. Acta Zoologica, 56, 283–289.

    Article  Google Scholar 

  • Gruhl, A. (2009). Serotonergic and FMRFamidergic nervous systems in gymnolaemate bryozoan larvae. Zoomorphology, 128, 135–156.

    Article  Google Scholar 

  • Gustus, R. M., & Cloney, R. A. (1972). Ultrastructural similarities between setae of brachiopods and polychaetes. Acta Zoologica, 53, 229–233.

    Article  Google Scholar 

  • Halanych, K. M. (1996). Convergence in the feeding apparatuses of lophophorates and pterobranch hemichordates revealed by 18S rDNA: an interpretation. The Biological Bulletin, 190, 1–5.

    Article  Google Scholar 

  • Halanych, K. M. (2004). The new view of animal phylogeny. Annual Review of Ecology, Evolution, and Systematics, 35, 229–256.

    Article  Google Scholar 

  • Halanych, K. M., Bacheller, J. D., Aguinaldo, A. M., Liva, S. M., Hillis, D. M., & Lake, J. A. (1995). Evidence from 18S ribosomal DNA that the lophophorates are protostome animals. Science, 267, 1641.

    Article  CAS  PubMed  Google Scholar 

  • Hanelt, B., Van Schyndel, D., Adema, C. M., Lewis, L. A., & Loker, E. S. (1996). The phylogenetic position of Rhopalura ophiocomae (Orthonectida) based on 18S ribosomal DNA sequence analysis. Molecular Biology and Evolution, 13(9), 1187–1191.

    Article  CAS  PubMed  Google Scholar 

  • Hartmann, S., Helm, C., Nickel, B., Meyer, M., Struck, T. H., Tiedemann, R., Selbig, J., & Bleidorn, C. (2012). Exploiting gene families for phylogenomic analysis of myzostomid transcriptome data. PloS One, 7, e29843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haszprunar, G., & Wanninger, A. (2008). On the fine structure of the creeping larva of Loxosomella murmanica: additional evidence for a clade of Kamptozoa (Entoprocta) and Mollusca. Acta Zoologica, 89(2), 137–148.

    Article  Google Scholar 

  • Haszprunar, G., Schander, C., & Halanych, K. M. (2008). Relationships of higher molluscan taxa. In W. F. Ponder & D. R. Lindberg (Eds.), Phylogeny and evolution of the Mollusca (pp. 19–32). Berkeley: University of California Press.

    Google Scholar 

  • Hatschek, B. (1878). Studien über Entwicklungsgeschichte der Anneliden: Ein Beitrag zur Morphologie der Bilaterien. A. Hölder.

  • Hausdorf, B., Helmkampf, M., Meyer, A., Witek, A., Herlyn, H., Bruchhaus, I., Hankeln, T., Struck, T. H., & Lieb, B. (2007). Spiralian phylogenomics supports the resurrection of Bryozoa comprising Ectoprocta and Entoprocta. Molecular Biology and Evolution, 24, 2723.

    Article  CAS  PubMed  Google Scholar 

  • Hausdorf, B., Helmkampf, M., Nesnidal, M. P., & Bruchhaus, I. (2010). Phylogenetic relationships within the lophophorate lineages (Ectoprocta, Brachiopoda and Phoronida). Molecular Phylogenetics and Evolution, 55, 1121–1127.

    Article  PubMed  Google Scholar 

  • Hay-Schmidt, A. (2000). The evolution of the serotonergic nervous system. Proceedings of the Royal Society B: Biological Sciences, 267, 1071–1079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hejnol, A. (2010). A twist in time—the evolution of spiral cleavage in the light of animal phylogeny. Integrative and Comparative Biology, 50(5), 695–706.

    Article  PubMed  Google Scholar 

  • Hejnol, A., & Martindale, M. Q. (2009). The mouth, the anus and the blastopore-open questions about questionable openings. Animal Evolution: Genomes, Fossils, and Trees, 33–40.

  • Hejnol, A., & Lowe, C. J. (2015). Embracing the comparative approach: how robust phylogenies and broader developmental sampling impacts the understanding of nervous system evolution. Philosophical Transactions of the Royal Society B, 370(1684), 20150045.

    Article  Google Scholar 

  • Hejnol, A., & Martín-Durán, J. M. (2015). Getting to the bottom of anal evolution. Zoologischer Anzeiger, 256, 61–74.

    Article  Google Scholar 

  • Hejnol, A., Obst, M., Stamatakis, A., Ott, M., Rouse, G. W., Edgecombe, G. D., et al. (2009). Assessing the root of bilaterian animals with scalable phylogenomic methods. Proceedings of the Royal Society B: Biological Sciences, 276, 4261.

    Article  PubMed  PubMed Central  Google Scholar 

  • Helfenbein, K. G., & Boore, J. L. (2004). The mitochondrial genome of Phoronis architecta—comparisons demonstrate that phoronids are lophotrochozoan protostomes. Molecular Biology and Evolution, 21(1), 153–157.

    Article  CAS  PubMed  Google Scholar 

  • Helfenbein, K. G., Fourcade, H. M., Vanjani, R. G., & Boore, J. L. (2004). The mitochondrial genome of Paraspadella gotoi is highly reduced and reveals that chaetognaths are a sister group to protostomes. Proceedings of the National Academy of Sciences of the United States of America, 101(29), 10639–10643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helm, C., Bernhart, S. H., Siederdissen, C. H., Nickel, B., & Bleidorn, C. (2012). Deep sequencing of small RNAs confirms an annelid affinity of Myzostomida. Molecular Phylogenetics and Evolution, 64(1), 198–203.

    Article  CAS  PubMed  Google Scholar 

  • Helmkampf, M., Bruchhaus, I., & Hausdorf, B. (2008a). Phylogenomic analyses of lophophorates (brachiopods, phoronids and bryozoans) confirm the Lophotrochozoa concept. Proceedings of the Royal Society B: Biological Sciences, 275, 1927.

    Article  PubMed  PubMed Central  Google Scholar 

  • Helmkampf, M., Bruchhaus, I., & Hausdorf, B. (2008b). Multigene analysis of lophophorate and chaetognath phylogenetic relationships. Molecular Phylogenetics and Evolution, 46(1), 206–214.

    Article  CAS  PubMed  Google Scholar 

  • Hochberg, R., & Litvaitis, M. K. (2000). Phylogeny of Gastrotricha: a morphology-based framework of gastrotrich relationships. The Biological Bulletin, 198(2), 299–305.

    Article  CAS  PubMed  Google Scholar 

  • Hyman, L. H. (1959). The invertebrates: smaller coelomate groups. Columbus: McGraw-Hill.

    Google Scholar 

  • Isowa, Y., Sarashina, I., Oshima, K., Kito, K., Hattori, M., & Endo, K. (2015). Proteome analysis of shell matrix proteins in the brachiopod Laqueus rubellus. Proteome Science, 13(1), 21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jackson, D. J., McDougall, C., Woodcroft, B., Moase, P., Rose, R. A., Kube, M., Reinhardt, R., Rokhsar, D. S., Montagnani, C., Joubert, C., Piquemal, D., & Degnan, B. M. (2010). Parallel evolution of nacre building gene sets in molluscs. Molecular Biology and Evolution, 27, 591–608.

    Article  CAS  PubMed  Google Scholar 

  • Jackson, D. J., Mann, K., Häussermann, V., Schilhabel, M. B., Lüter, C., Griesshaber, E., Schmahl, W., & Wörheide, G. (2015). The Magellania venosa biomineralizing proteome: a window into brachiopod shell evolution. Genome Biology and Evolution, 7(5), 1349–1362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kenny, N. J., Namigai, E. K., Marlétaz, F., Hui, J. H., & Shimeld, S. M. (2015). Draft genome assemblies and predicted microRNA complements of the intertidal lophotrochozoans Patella vulgata (Mollusca, Patellogastropoda) and Spirobranchus (Pomatoceros) lamarcki (Annelida, Serpulida). Marine Genomics. doi:10.1016/j.margen.2015.07.004.

    PubMed  Google Scholar 

  • Knauss, E. B. (1979). Indication of an anal pore in Gnathostomulida. Zoologica Script, 8, 181–186.

    Article  Google Scholar 

  • Kobayashi, M., Furuya, H., & Holland, P. W. (1999). Dicyemids are higher animals. Nature, 401(6755), 762.

    CAS  PubMed  Google Scholar 

  • Kocot, K. M. (2013a). Recent advances and unanswered questions in deep molluscan phylogenetics. American Malacological Bulletin, 31(1), 195–208.

    Article  Google Scholar 

  • Kocot, K. M. (2013b). A combined approach toward resolving the phylogeny of Mollusca. Doctoral dissertation: Auburn University.

  • Kocot, K. M., & Todt, C. (2014). Three new meiofaunal solenogaster species (Mollusca: Aplacophora) from the north-east Pacific. Journal of Natural History, 48(45–48), 3007–3031.

    Article  Google Scholar 

  • Kocot, K. M., Cannon, J. T., & Halanych, K. M. (2010). Elucidating animal phylogeny. In R. DeSalle & B. Schierwater (Eds.), Key transitions in animal evolution (pp. 15–33). Boca Raton: CRC Press.

    Chapter  Google Scholar 

  • Kocot, K. M., Cannon, J. T., Todt, C., Citarella, M. R., Kohn, A. B., Meyer, A., et al. (2011). Phylogenomics reveals deep molluscan relationships. Nature, 477, 452–456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kristensen, R. M., & Funch, P. (2000). Micrognathozoa: a new class with complicated jaws like those of Rotifera and Gnathostomulida. Journal of Morphology, 246, 1–49.

    Article  CAS  PubMed  Google Scholar 

  • Kück, P., & Struck, T. H. (2014). BaCoCa—a heuristic software tool for the parallel assessment of sequence biases in hundreds of gene and taxon partitions. Molecular Phylogenetics and Evolution, 70, 94–98.

    Article  PubMed  CAS  Google Scholar 

  • Kvist, S., Laumer, C. E., Junoy, J., & Giribet, G. (2014a). New insights into the phylogeny, systematics and DNA barcoding of Nemertea. Invertebrate Systematics, 28(3), 287–308.

    Article  CAS  Google Scholar 

  • Kvist, S., Laumer, C. E., Junoy, J., & Giribet, G. (2014b). A further contribution to the phylogeny and systematics of Nemertea: increased sampling for Hubrechtidae, a discussion on Plectonemertidae and a phylum-wide barcoding gap detection assessment. Invertebrate Systematics [Internet], 28, 287–308.

    Article  CAS  Google Scholar 

  • Lartillot, N., & Philippe, H. (2004). A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Molecular Biology and Evolution, 21(6), 1095–1109.

    Article  CAS  PubMed  Google Scholar 

  • Laumer, C. E., Bekkouche, N., Kerbl, A., Goetz, F., Neves, R. C., Sørensen, M. V., Kristensen, R.M., Hejnol, A., Dunn, C.W., Giribet, G., & Worsaae, K. (2015). Spiralian phylogeny informs the evolution of microscopic lineages. Current Biology, 25(15), 2000–2006.

  • Lauri, A., Brunet, T., Handberg-Thorsager, M., Fischer, A. H., Simakov, O., Steinmetz, P. R., Tomer, R., Keller, P. J., & Arendt, D. (2014). Development of the annelid axochord: insights into notochord evolution. Science, 345(6202), 1365–1368.

    Article  CAS  PubMed  Google Scholar 

  • Lehmann, J., Stadler, P. F., & Krauss, V. (2013). Near intron pairs and the metazoan tree. Molecular Phylogenetics and Evolution, 66(3), 811–823.

    Article  CAS  PubMed  Google Scholar 

  • Lemer, S., Kawauchi, G. Y., Andrade, S. C., González, V. L., Boyle, M. J., & Giribet, G. (2015). Re-evaluating the phylogeny of Sipuncula through transcriptomics. Molecular Phylogenetics and Evolution, 83, 174–183.

    Article  PubMed  Google Scholar 

  • Lemmon, A. R., Emme, S. A., & Lemmon, E. M. (2012). Anchored hybrid enrichment for massively high-throughput phylogenomics. Systematic Biology, 61(5), 727–744.

    Article  CAS  PubMed  Google Scholar 

  • Li, C., Hofreiter, M., Straube, N., Corrigan, S., & Naylor, G. J. (2013). Capturing protein-coding genes across highly divergent species. Biotechniques, 54(6), 321–326.

    CAS  PubMed  Google Scholar 

  • Li, Y., Kocot, K. M., Schander, C., Santos, S. R., Thornhill, D. J., & Halanych, K. M. (2015). Mitogenomics reveals phylogeny and repeated motifs in control regions of the deep-sea family Siboglinidae (Annelida). Molecular Phylogenetics and Evolution, 85, 221–229.

    Article  CAS  PubMed  Google Scholar 

  • Luo, H., Arndt, W., Zhang, Y., Shi, G., Alekseyev, M. A., Tang, J., Hughes, A. L., & Friedman, R. (2012). Phylogenetic analysis of genome rearrangements among five mammalian orders. Molecular Phylogenetics and Evolution, 65(3), 871–882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo, Y. J., Takeuchi, T., Koyanagi, R., Yamada, L., Kanda, M., Khalturina, M., Manabu Fujie, M., Yamasaki, S., Endo, K., & Satoh, N. (2015). The Lingula genome provides insights into brachiopod evolution and the origin of phosphate biomineralization. Nature Communications. doi:10.1038/ncomms9301.

    Google Scholar 

  • Lüter, C., & Bartolomaeus, T. (1997). The phylogenetic position of Brachiopoda—a comparison of morphological and molecular data. Zoologica Scripta, 26, 245–253.

    Article  Google Scholar 

  • Mackey, L. Y., Winnepenninckx, B., De Wachter, R., Backeljau, T., Emschermann, P., & Garey, J. R. (1996). 18S rRNA suggests that Entoprocta are protostomes, unrelated to Ectoprocta. Journal of Molecular Evolution, 42, 552–559.

    Article  CAS  PubMed  Google Scholar 

  • Mallatt, J., Craig, C. W., & Yoder, M. J. (2012). Nearly complete rRNA genes from 371 Animalia: updated structure-based alignment and detailed phylogenetic analysis. Molecular Phylogenetics and Evolution, 64(3), 603–617.

    Article  CAS  PubMed  Google Scholar 

  • Marlétaz, F., Martin, E., Perez, Y., Papillon, D., Caubit, X., Lowe, C. J., et al. (2006). Chaetognath phylogenomics: a protostome with deuterostome-like development. Current Biology, 16(15), R577–R578.

    Article  PubMed  CAS  Google Scholar 

  • Marlétaz, F., Gilles, A., Caubit, X., Perez, Y., Dossat, C., Samain, S., Gyapay, G., Wincker, P., & Le Parco, Y. (2008). Chaetognath transcriptome reveals ancestral and unique features among bilaterians. Genome Biology, 9(6), R94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martínez, A., Di Domenico, M., Rouse, G. W., & Worsaae, K. (2015). Phylogeny and systematics of Protodrilidae (Annelida) inferred with total evidence analyses. Cladistics, 31(3), 250–276.

    Article  Google Scholar 

  • Maslakova, S. A., Martindale, M. Q., & Norenburg, J. L. (2004). Vestigial prototroch in a basal nemertean, Carinoma tremaphoros (Nemertea; Palaeonemertea). Evolution and Development, 6, 219–226.

    Article  CAS  PubMed  Google Scholar 

  • Matus, D. Q., Copley, R. R., Dunn, C. W., Hejnol, A., Eccleston, H., Halanych, K. M., et al. (2006). Broad taxon and gene sampling indicate that chaetognaths are protostomes. Current Biology, 16(15), R575–R576.

    Article  CAS  PubMed  Google Scholar 

  • McHugh, D. (1997). Molecular evidence that echiurans and pogonophorans are derived annelids. Proceedings of the National Academy of Sciences, 94(15), 8006–8009.

    Article  CAS  Google Scholar 

  • Merkel, J., Lieb, B., & Wanninger, A. (2015). Muscular anatomy of an entoproct creeping-type larva reveals extraordinary high complexity and potential shared characters with mollusks. BMC Evolutionary Biology, 15(1), 130.

    Article  PubMed  PubMed Central  Google Scholar 

  • Minelli, A. (2009). Perspectives in animal phylogeny and evolution. Oxford: Oxford University Press.

    Google Scholar 

  • Nesnidal, M. P., Helmkampf, M., Bruchhaus, I., & Hausdorf, B. (2010). Compositional heterogeneity and phylogenomic inference of metazoan relationships. Molecular Biology and Evolution, 27(9), 2095–2104.

    Article  CAS  PubMed  Google Scholar 

  • Nesnidal, M. P., Helmkampf, M., Meyer, A., Witek, A., Bruchhaus, I., Ebersberger, I., Hankeln, T., Lieb, B., Struck, T. H., & Hausdorf, B. (2013). New phylogenomic data support the monophyly of Lophophorata and an Ectoproct-Phoronid clade and indicate that Polyzoa and Kryptrochozoa are caused by systematic bias. BMC Evolutionary Biology, 13(1), 253.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nesnidal, M. P., Helmkampf, M., Bruchhaus, I., Ebersberger, I., & Hausdorf, B. (2014). Lophophorata monophyletic—after all. In J. W. Wagele & T. Bartolomaeus (Eds.), Deep metazoan phylogeny: the backbone of the tree of life (pp. 127–142). Berlin: Degruyter.

    Google Scholar 

  • Nielsen, C. (1971). Entoproct life-cycles and the entoproct/ectoproct relationship. Ophelia, 9, 209–341.

    Article  Google Scholar 

  • Nielsen, C. (1977). The relationships of Entoprocta, Ectoprocta and Phoronida. American Zoologist, 17, 149–150.

    Article  Google Scholar 

  • Nielsen, C. (1985). Animal phylogeny in the light of the trochaea theory. Biological Journal of the Linnean Society, 23, 243–299.

    Article  Google Scholar 

  • Nielsen, C. (1987). Structure and function of metazoan ciliary bands and their phylogenetic significance. Acta Zoologica, 68, 205–262.

    Article  Google Scholar 

  • Nielsen, C. (2012). Animal evolution: interrelationships of the living phyla. Oxford: Oxford University Press.

    Google Scholar 

  • Nielsen, C., & Worsaae, K. (2010). Structure and occurrence of cyphonautes larvae (Bryozoa, Ectoprocta). Journal of Morphology, 271, 1094–1109.

    Article  PubMed  Google Scholar 

  • Orrhage, L. (1971). Light and electron microscope studies of some annelid setae. Acta Zoologica, 52, 157–169.

    Article  Google Scholar 

  • Orrhage, L. (1973). Light and electron microscope studies of some brachiopod and pogonophoran setae. Zoomorphology, 74, 253–270.

    Google Scholar 

  • Papillon, D., Perez, Y., Caubit, X., & Le Parco, Y. (2004). Identification of chaetognaths as protostomes is supported by the analysis of their mitochondrial genome. Molecular Biology and Evolution, 21(11), 2122–2129.

    Article  CAS  PubMed  Google Scholar 

  • Paps, J., Bagunà, J., & Riutort, M. (2009a). Bilaterian phylogeny: a broad sampling of 13 nuclear genes provides a new Lophotrochozoa phylogeny and supports a paraphyletic basal Acoelomorpha. Molecular Biology and Evolution, 26, 2397–2406.

    Article  CAS  PubMed  Google Scholar 

  • Paps, J., Baguñà, J., & Riutort, M. (2009b). Lophotrochozoa internal phylogeny: new insights from an up-to-date analysis of nuclear ribosomal genes. Proceedings of the Royal Society B: Biological Sciences, 276, 1245–1254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Passamaneck, Y., & Halanych, K. M. (2006). Lophotrochozoan phylogeny assessed with LSU and SSU data: evidence of lophophorate polyphyly. Molecular Phylogenetics and Evolution, 40, 20–28.

    Article  CAS  PubMed  Google Scholar 

  • Pawlowski, J., Montoya-Burgos, J. I., Fahrni, J. F., Wüest, J., & Zaninetti, L. (1996). Origin of the Mesozoa inferred from 18S rRNA gene sequences. Molecular Biology and Evolution, 13(8), 1128–1132.

    Article  CAS  PubMed  Google Scholar 

  • Peel, J. S. (2010). A corset-like fossil from the Cambrian Sirius Passet Lagerstätte of North Greenland and its implications for cycloneuralian evolution. Journal of Paleontology, 84, 332–340.

    Article  Google Scholar 

  • Peel, J. S., Stein, M., & Kristensen, R. M. (2013). Life cycle and morphology of a Cambrian stem-lineage loriciferan. PloS One, 8(8), e73583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez, Y., Müller, C. H., & Harzsch, S. (2014). The Chaetognatha: an anarchistic taxon between Protostomia and Deuterostomia. In J. W. Wagele & T. Bartolomaeus (Eds.), Deep metazoan phylogeny: the backbone of the tree of life (pp. 127–142). Berlin: Degruyter.

    Google Scholar 

  • Peterson, K. J., & Eernisse, D. J. (2001). Animal phylogeny and the ancestry of bilaterians: inferences from morphology and 18S rDNA gene sequences. Evolution and Development, 3, 170–205.

    Article  CAS  PubMed  Google Scholar 

  • Petrov, N. B., Aleshin, V. V., Pegova, A. N., Ofitserov, M. V., & Slyusarev, G. S. (2010). New insight into the phylogeny of Mesozoa: evidence from the 18S and 28S rRNA genes. Moscow University Biological Sciences Bulletin, 65(4), 167–169.

    Article  Google Scholar 

  • Philippe, H., Lartillot, N., & Brinkmann, H. (2005). Multigene analyses of bilaterian animals corroborate the monophyly of Ecdysozoa, Lophotrochozoa, and Protostomia. Molecular Biology and Evolution, 22(5), 1246–1253.

  • Philippe, H., Brinkmann, H., Martinez, P., Riutort, M., & Baguna, J. (2007). Acoel flatworms are not Platyhelminthes: evidence from phylogenomics. PloS One, 2(8), e717.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Philippe, H., Brinkmann, H., Lavrov, D. V., Timothy, J., Littlewood, D., Manuel, M., Wörheide, G., & Baurain, D. (2011). Resolving difficult phylogenetic questions: why more sequences are not enough. PLoS Biology, 9(3), 402.

    Article  CAS  Google Scholar 

  • Pires, A., & Woollacott, R. M. (1997). Serotonin and dopamine have opposite effects on phototaxis in larvae of the bryozoan Bugula neritina. Biological Bulletin, 192, 399–409.

    Article  CAS  Google Scholar 

  • Pisani, D., & Liu, A. G. (2015). Animal evolution: only rocks can set clocks. Current Biology, 25, R1070–R1091.

    Article  CAS  Google Scholar 

  • Rieger, R. M. (1980). A new group of interstitial worms, Lobatocerebridae nov. fam. (Annelida) and its significance for metazoan phylogeny. Zoomorphologie, 95(1), 41–84.

    Article  Google Scholar 

  • Rieger, R. M. (1991). Jennaria pulchra, nov. gen. nov. spec., eine den psammobionten Anneliden nahestehende Gattung aus dem Küstengrundwasser von North Carolina. Berichte des Naturwissenschaftlich-Medizinischen Vereins in Innsbruck, 78, 203–215.

    Google Scholar 

  • Rieger, R. M., & Sterrer, W. (1975a). New spicular skeletons in Turbellaria, and the occurrence of spicules in marine meiofauna. Part I. Zeitschrift fur Zoologische Systematik und Evolutionsforschung., 13, 207–248.

    Article  Google Scholar 

  • Rieger, R. M., & Sterrer, W. (1975b). New spicular skeletons in Turbellaria, and the occurrence of spicules in marine meiofauna. Part II. Zeitschrift fur Zoologische Systematik und Evolutionsforschung., 13, 249–278.

    Google Scholar 

  • Rieger, V., Perez, Y., Müller, C. H., Lacalli, T., Hansson, B. S., & Harzsch, S. (2011). Development of the nervous system in hatchlings of Spadella cephaloptera (Chaetognatha), and implications for nervous system evolution in Bilateria. Development, Growth and Differentiation, 53(5), 740–759.

    Article  PubMed  Google Scholar 

  • Rokas, A., & Holland, P. W. (2000). Rare genomic changes as a tool for phylogenetics. Trends in Ecology and Evolution, 15(11), 454–459.

    Article  PubMed  Google Scholar 

  • Rokas, A., Kathirithamby, J., & Holland, P. W. H. (1999). Intron insertion as a phylogenetic character: the engrailed homeobox of Strepsiptera does not indicate affinity with Diptera. Insect Molecular Biology, 8(4), 527–530.

    Article  CAS  PubMed  Google Scholar 

  • Roule, L. (1891). Considerations sur I’embranchement des Trochozoaires. Annales des sciences naturelles, Paris series, 7(11), 121–178.

    Google Scholar 

  • Rouse, G. W. (1999). Trochophore concepts: ciliary bands and the evolution of larvae in spiralian Metazoa. Biological Journal of the Linnean Society, 66, 411–464.

    Article  Google Scholar 

  • Rundell, R. J., & Leander, B. S. (2010). Masters of miniaturization: convergent evolution among interstitial eukaryotes. Bioessays, 32(5), 430–437.

    Article  PubMed  Google Scholar 

  • Ruppert, E. E. (1991). Gastrotricha. In F. W. Harrison & E. E. Ruppert (Eds.), Microscopic anatomy of invertebrates (pp. 41–109). New York: Wiley-Liss.

    Google Scholar 

  • Ruppert, E. E., Fox, R. S., & Barnes, R. D. (2004). Invertebrate zoology (7th ed.). Belmont: Brooks/Coyle.

    Google Scholar 

  • Santagata, S. (2008). Evolutionary and structural diversification of the larval nervous system among marine bryozoans. Biological Bulletin, 215, 3–23.

    Article  PubMed  Google Scholar 

  • Santagata, S., & Cohen, B. (2009). Phoronid phylogenetics (Brachiopoda; Phoronata): evidence from morphological cladistics, small and large subunit rDNA sequences, and mitochondrial cox1. Zoological Journal of the Linnean Society, 157, 34–50.

    Article  Google Scholar 

  • Scherholz, M., Redl, E., Wollesen, T., Todt, C., & Wanninger, A. (2013). Aplacophoran mollusks evolved from ancestors with polyplacophoran-like features. Current Biology, 23(21), 2130–2134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scherholz, M., Redl, E., Wollesen, T., Todt, C., & Wanninger, A. (2015). From complex to simple: myogenesis in an aplacophoran mollusk reveals key traits in aculiferan evolution. BMC Evolutionary Biology, 15(1), 201.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmidt-Rhaesa, A. (2008). The evolution of organ systems. Oxford: Oxford University Press.

    Google Scholar 

  • Schrödl, M., & Stöger, I. (2014). A review on deep molluscan phylogeny: old markers, integrative approaches, persistent problems. Journal of Natural History, 48(45–48), 2773–2804.

    Article  Google Scholar 

  • Schulze, A. (2002). Ultrastructure of opisthosomal chaetae in Vestimentifera (Pogonophora, Obturata) and implications for phylogeny. Acta Zoologica, 82, 127–135.

    Article  Google Scholar 

  • Shimizu, K., Hunter, E., & Fusetani, N. (2000). Localisation of biogenic amines in larvae of Bugula neritina (Bryozoa: Cheilostomatida) and their effects on settlement. Marine Biology, 136, 1–9.

    Article  CAS  Google Scholar 

  • Simakov, O., Marletaz, F., Cho, S. J., Edsinger-Gonzales, E., Havlak, P., Hellsten, U., Kuo, D. H., Larsson, T., Lv, J., Arendt, D., Savage, R., Osoegawa, K., de Jong, P., Grimwood, J., Chapman, J. A., Shapiro, H., Aerts, A., Otillar, R. P., Terry, A. Y., Boore, J. L., Grigoriev, I. V., Lindberg, D. R., Seaver, E. C., Weisblat, D. A., Putnam, N. H., & Rokhsar, D. S. (2013). Insights into bilaterian evolution from three spiralian genomes. Nature, 493(7433), 526–531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sliusarev, G. S. (2008). Phylum Orthonectida: morphology, biology, and relationships to other multicellular animals. Zhurnal Obshcheĭ Biologii, 69, 403–427.

    CAS  PubMed  Google Scholar 

  • Smith, S. A., Wilson, N. G., Goetz, F. E., Feehery, C., Andrade, S. C. S., Rouse, G. W., et al. (2011). Resolving the evolutionary relationships of molluscs with phylogenomic tools. Nature, 480, 364–367.

    Article  CAS  PubMed  Google Scholar 

  • Sperling, E. A., Pisani, D., & Peterson, K. J. (2011). Molecular paleobiological insights into the origin of the Brachiopoda. Evolution and Development, 13, 290–303.

    Article  PubMed  Google Scholar 

  • Struck, T. H. (2014). TreSpEx—detection of misleading signal in phylogenetic reconstructions based on tree information. Evolutionary Bioinformatics, 10, 51.

    Article  CAS  Google Scholar 

  • Struck, T. H., & Fisse, F. (2008). Phylogenetic position of Nemertea derived from phylogenomic data. Molecular Biology and Evolution, 25(4), 728–736.

    Article  CAS  PubMed  Google Scholar 

  • Struck, T. H., Schult, N., Kusen, T., Hickman, E., Bleidorn, C., McHugh, D., & Halanych, K. M. (2007). Annelid phylogeny and the status of Sipuncula and Echiura. BMC Evolutionary Biology, 7, 57.

    Article  PubMed  PubMed Central  Google Scholar 

  • Struck, T. H., Nesnidal, M. P., Purschke, G., & Halanych, K. M. (2008). Detecting possibly saturated positions in 18S and 28S sequences and their influence on phylogenetic reconstruction of Annelida (Lophotrochozoa). Molecular Phylogenetics and Evolution, 48(2), 628–645.

    Article  CAS  PubMed  Google Scholar 

  • Struck, T. H., Paul, C., Hill, N., Hartmann, S., Hosel, C., Kube, M., Lieb, B., Meyer, A., Tiedemann, R., Purschke, G., & Bleidorn, C. (2011). Phylogenomic analyses unravel annelid evolution. Nature, 471, 95–98.

    Article  CAS  PubMed  Google Scholar 

  • Struck, T. H., Wey-Fabrizius, A. R., Golombek, A., Hering, L., Weigert, A., Bleidorn, C., Klebow, S., Iakovenko, N., Hausdorf, B., Petersen, M., Kück, P., Herlyn, H., & Hankeln, T. (2014). Platyzoan paraphyly based on phylogenomic data supports a noncoelomate ancestry of Spiralia. Molecular Biology and Evolution, 31(7), 1833–1849.

    Article  CAS  PubMed  Google Scholar 

  • Struck, T. H., Golombek, A., Weigert, A., Franke, F. A., Westheide, W., Purschke, G., Bleidorn, C., & Halanych, K. M. (2015). The evolution of annelids reveals two adaptive routes to the interstitial realm. Current Biology, 25(15), 1993–1999.

    Article  CAS  PubMed  Google Scholar 

  • Stuart, A. (1955). A test for homogeneity of the marginal distributions in a two-way classification. Biometrika, 42, 412–416.

    Article  Google Scholar 

  • Summers, M. M., & Rouse, G. W. (2014). Phylogeny of Myzostomida (Annelida) and their relationships with echinoderm hosts. BMC Evolutionary Biology, 14(1), 170.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sutton, M. D., & Sigwart, J. D. (2012). A chiton without a foot. Palaeontology, 55(2), 401–411.

    Article  Google Scholar 

  • Sutton, M. D., Briggs, D. E., Siveter, D. J., Siveter, D. J., & Sigwart, J. D. (2012). A Silurian armoured aplacophoran and implications for molluscan phylogeny. Nature, 490(7418), 94–97.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, T. G., Ogino, K., Tsuneki, K., & Furuya, H. (2010). Phylogenetic analysis of dicyemid mesozoans (phylum Dicyemida) from innexin amino acid sequences: dicyemids are not related to Platyhelminthes. Journal of Parasitology, 96(3), 614–625.

    Article  PubMed  Google Scholar 

  • Szabó, R., Calder, A. C., & Ferrier, D. E. (2014). Biomineralisation during operculum regeneration in the polychaete Spirobranchus lamarcki. Marine Biology, 161, 2621–2629.

    Article  CAS  Google Scholar 

  • Taylor, P. D., Vinn, O., & Wilson, M. A. (2010). Evolution of biomineralization in ‘Lophophorates’. Paleontology, 84, 317–333.

    Google Scholar 

  • Taylor, P. D., Lombardi, C., & Cocito, S. (2014). Biomineralization in bryozoans: present, past and future. Biological Reviews. doi:10.1111/brv.12148.

    Google Scholar 

  • Temereva, E., & Wanninger, A. (2012). Development of the nervous system in Phoronopsis harmeri (Lophotrochozoa, Phoronida) reveals both deuterostome- and trochozoan-like features. BMC Evolutionary Biology, 12(1), 121.

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomas, R. D. K., & Vinther, J. (2012). Implications of the occurrence of paired anterior chaetae in the Late Early Cambrian mollusc Pelagiella from the Kinziers Formation of Pennsylvania for relationships among taxa and early evolution of the Mollusca. Geological Society of America Abstract Programs, 44, 326.

    Google Scholar 

  • Thompson, J. V. (2014). On Polyzoa, a new animal discovered as an inhabitant of some Zoophites—with a description of the newly instituted genera of Pedicellaria and Vesicularia, and their species.

  • Thomson, R. C., Plachetzki, D. C., Mahler, D. L., & Moore, B. R. (2014). A critical appraisal of the use of microRNA data in phylogenetics. Proceedings of the National Academy of Sciences, 111(35), E3659–E3668.

    Article  CAS  Google Scholar 

  • Todaro, M. A., Telford, M. J., Lockyer, A. E., & Littlewood, D. T. J. (2006). Interrelationships of the Gastrotricha and their place among the Metazoa inferred from 18S rRNA genes. Zoologica Scripta, 35, 251–259.

    Article  Google Scholar 

  • Vinther, J. (2015). Animal evolution: when small worms cast long phylogenetic shadows. Current Biology, 25(17), R762–R764.

    Article  CAS  PubMed  Google Scholar 

  • Vinther, J., Sperling, E. A., Briggs, D. E., & Peterson, K. J. (2012). A molecular palaeobiological hypothesis for the origin of aplacophoran molluscs and their derivation from chiton-like ancestors. Proceedings of the Royal Society of London B: Biological Sciences, 279(1732), 1259–1268.

    Article  Google Scholar 

  • Voronezhskaya, E. E., Tyurin, S. A., & Nezlin, L. P. (2002). Neuronal development in larval chiton Ischnochiton hakodadensis (Mollusca: Polyplacophora). Journal of Comparative Neurology, 444, 25–38.

    Article  PubMed  Google Scholar 

  • Voronezhskaya, E. E., Tsitrin, E. B., & Nezlin, L. P. (2003). Neuronal development in larval polychaete Phyllodoce maculata (Phyllodocidae). Journal of Comparative Neurology, 455, 299–309.

    Article  PubMed  Google Scholar 

  • Waeschenbach, A., Taylor, P. D., & Littlewood, D. T. J. (2012). A molecular phylogeny of bryozoans. Molecular Phylogenetics and Evolution, 62(2), 718–735.

    Article  PubMed  Google Scholar 

  • Walsh, E. J., Wallace, R. L., & Shiel, R. J. (2005). Toward a better understanding of the phylogeny of the Asplanchnidae (Rotifera). Hydrobiologia, 546, 71–80.

    Article  CAS  Google Scholar 

  • Wanninger, A. (2009). Shaping the things to come: ontogeny of lophotrochozoan neuromuscular systems and the tetraneuralia concept. The Biological Bulletin, 216, 293–306.

    PubMed  Google Scholar 

  • Wanninger, A., & Haszprunar, G. (2003). The development of the serotonergic and FMRF-amidergic nervous system in Antalis entalis (Mollusca, Scaphopoda). Zoomorphology, 122, 77–85.

    Google Scholar 

  • Wanninger, A., Fuchs, J., & Haszprunar, G. (2007). Anatomy of the serotonergic nervous system of an entoproct creeping-type larva and its phylogenetic implications. Invertebrate Biology, 126(3), 268–278.

    Article  Google Scholar 

  • Watanabe, K., & Yokobori, S. I. (2014). How the early genetic code was established?: inference from the analysis of extant animal mitochondrial decoding systems. In Chemical biology of nucleic acids (pp. 25–40). Springer Berlin Heidelberg.

  • Weigert, A., Helm, C., Meyer, M., Nickel, B., Arendt, D., Hausdorf, B., Santos, S. R., Halanych, K. M., Purschke, G., Bleidorn, C., & Struck, T. H. (2014). Illuminating the base of the annelid tree using transcriptomics. Molecular Biology and Evolution, 31(6), 1391–1401.

    Article  CAS  PubMed  Google Scholar 

  • Westheide, W., & Russell, C. W. (1992). Ultrastructure of chrysopetalid paleal chaetae (Annelida, Polychaeta). Acta Zoologica, 73, 197–202.

    Article  Google Scholar 

  • Wey-Fabrizius, A. R., Herlyn, H., Rieger, B., Rosenkranz, D., Witek, A., Welch, D. B. M., et al. (2014). Transcriptome data reveal syndermatan relationships and suggest the evolution of endoparasitism in Acanthocephala via an epizoic stage. PloS One, 9(2), e88618.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Winchell, C. J., & Jacobs, D. K. (2013). Expression of the Lhx genes apterous and lim1 in an errant polychaete: implications for bilaterian appendage evolution, neural development, and muscle diversification. EvoDevo, 4(1), 4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winnepenninckx, B., Backeljau, T., Mackey, L. Y., Brooks, J. M., De Wachter, R., Kumar, S., & Garey, J. R. (1995). 18S rRNA data indicate that Aschelminthes are polyphyletic in origin and consist of at least three distinct clades. Molecular Biology and Evolution, 12, 1132–1137.

    CAS  PubMed  Google Scholar 

  • Witek, A., Herlyn, H., Ebersberger, I., Mark Welch, D. B., & Hankeln, T. (2009). Support for the monophyletic origin of Gnathifera from phylogenomics. Molecular Phylogenetics and Evolution, 53, 1037–1041.

    Article  PubMed  Google Scholar 

  • Worsaae, K., & Rouse, G. W. (2008). Is Diurodrilus an annelid? Journal of Morphology, 269, 1426–1455.

    Article  PubMed  Google Scholar 

  • Wourms, J. P. (1976). Structure, composition, and unicellular origin of nemertean stylets. American Zoologist, 16, 213.

    Google Scholar 

  • Wray, G. A. (2015). Molecular clocks and the early evolution of metazoan nervous systems. Philosophical Transactions B, 370(1684), 20150046.

    Article  Google Scholar 

  • Wurdak, E. S. (1987). Ultrastructure and histochemistry, of the stomach of Asplanchna sieboldi. Hydrobiologia, 147, 361–371.

    Article  Google Scholar 

  • Zapata, F., Wilson, N. G., Howison, M., Andrade, S. C., Jörger, K. M., Schrödl, M., Goetz, F., Giribet, G., & Dunn, C. W. (2014). Phylogenomic analyses of deep gastropod relationships reject Orthogastropoda. Proceedings of the Royal Society of London B: Biological Sciences, 281(1794), 20141739.

    Article  Google Scholar 

  • Zhong, M., Hansen, B., Nesnidal, M., Golombek, A., Halanych, K. M., & Struck, T. H. (2011). Detecting the symplesiomorphy trap: a multigene phylogenetic analysis of terebelliform annelids. BMC Evolutionary Biology, 11(1), 369.

  • Zrzavý, J. (2003). Gastrotricha and metazoan phylogeny. Zoologica Scripta, 32, 61–81.

    Article  Google Scholar 

  • Zrzavý, J., Mihulka, S., Kepka, P., Bezděk, A., & Tietz, D. (1998). Phylogeny of the Metazoa based on morphological and 18S ribosomal DNA evidence. Cladistics, 14(3), 249–285.

    Article  Google Scholar 

Download references

Acknowledgments

I thank Andreas Wanninger for inviting me to contribute this paper to this special issue celebrating the first 20 years of the “New Animal Phylogeny.” I thank two anonymous reviewers and Nagayasu Nakanishi who provided comments and suggestions that substantially helped improve this manuscript. I thank Leonid Moroz for photographing mesozoans we collected in Antarctica. Animal images in Fig. 1 were downloaded without modification from PhyloPic.org under a creative commons license (http://creativecommons.org/licenses/by/3.0/). This work was supported by a U.S. National Science Foundation International Postdoctoral Research Fellowship (DBI-1306538).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin M. Kocot.

Additional information

This article is part of the Special Issue The new animal phylogeny: The first 20 years.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kocot, K.M. On 20 years of Lophotrochozoa. Org Divers Evol 16, 329–343 (2016). https://doi.org/10.1007/s13127-015-0261-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-015-0261-3

Keywords

Navigation