Organisms Diversity & Evolution

, Volume 16, Issue 2, pp 329–343 | Cite as

On 20 years of Lophotrochozoa

  • Kevin M. KocotEmail author


Lophotrochozoa is a protostome clade that includes disparate animals such as molluscs, annelids, bryozoans, and flatworms, giving it the distinction of including the most body plans of any of the three major clades of Bilateria. This extreme morphological disparity has prompted numerous conflicting phylogenetic hypotheses about relationships among lophotrochozoan phyla. Here, I review the current understanding of lophotrochozoan phylogeny with emphasis on recent insights gained through approaches taking advantage of high-throughput DNA sequencing (phylogenomics). Of significance, Platyzoa, a hypothesized clade of mostly small-bodied animals, appears to be an artifact of long-branch attraction. Recent studies recovered Gnathifera (Syndermata, Gnathostomulida, and Micrognathozoa) sister to all other lophotrochozoans and a clade called Rouphozoa (Platyhelminthes and Gastrotricha) sister to the remaining non-gnathiferan lophotrochozoans. Although Bryozoa was traditionally grouped with Brachiopoda and Phoronida (Lophophorata), most molecular studies have supported a clade including Entoprocta, Cycliophora, and Bryozoa (Polyzoa). However, recent phylogenomic work has shown that entoprocts and bryozoans have compositionally heterogeneous genomes that may cause systematic artifacts affecting their phylogenetic placement. Lastly, relationships within Trochozoa (Mollusca, Annelida, and relatives) largely remain ambiguous. Recent work has shown that phylogenomic studies must identify and reduce sources of systematic error, such as amino acid compositional heterogeneity and long-branch attraction. Still, other approaches such as the analysis of rare genomic changes may be needed to overcome challenges to standard phylogenomic approaches. Resolving lophotrochozoan phylogeny will provide important insight into how these complex and diverse body plans evolved and provide a much-needed framework for comparative studies.


Lophotrochozoa Spiralia Trochozoa Lophophorata Platyzoa Phylogenomic 



I thank Andreas Wanninger for inviting me to contribute this paper to this special issue celebrating the first 20 years of the “New Animal Phylogeny.” I thank two anonymous reviewers and Nagayasu Nakanishi who provided comments and suggestions that substantially helped improve this manuscript. I thank Leonid Moroz for photographing mesozoans we collected in Antarctica. Animal images in Fig. 1 were downloaded without modification from under a creative commons license ( This work was supported by a U.S. National Science Foundation International Postdoctoral Research Fellowship (DBI-1306538).


  1. Aguinaldo, A. M. A., Turbeville, J. M., Linford, L. S., Rivera, M. C., Garey, J. R., Raff, R. A., & Lake, J. A. (1997). Evidence for a clade of nematodes, arthropods and other moulting animals. Nature, 387(6632), 489–493.Google Scholar
  2. Ahlrichs, W. H. (1997). Epidermal ultrastructure of Seison nebaliae and Seison annulatus, and a comparison of epidermal structures within the Gnathifera. Zoomorphology, 117, 41–48.CrossRefGoogle Scholar
  3. Albertin, C. B., Simakov, O., Mitros, T., Wang, Z. Y., Pungor, J. R., Edsinger-Gonzales, E., Brenner, S., Ragsdale, C. W., & Rokhsar, D. S. (2015). The octopus genome and the evolution of cephalopod neural and morphological novelties. Nature, 524(7564), 220–224.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Altenburger, A., & Wanninger, A. (2010). Neuromuscular development in Novocrania anomala: evidence for the presence of serotonin and a spiralian‐like apical organ in lecithotrophic brachiopod larvae. Evolution & Development, 12(1), 16–24.Google Scholar
  5. Anderson, F. E., Córdoba, A. J., & Thollesson, M. (2004). Bilaterian phylogeny based on analyses of a region of the sodium–potassium ATPase β-subunit gene. Journal of Molecular Evolution, 58(3), 252–268.Google Scholar
  6. Andrade, S. C., Montenegro, H., Strand, M., Schwartz, M. L., Kajihara, H., Norenburg, J. L., Turbeville, J., Sunberg, P., & Giribet, G. (2014). A transcriptomic approach to ribbon worm systematics (Nemertea): resolving the Pilidiophora problem. Molecular Biology and Evolution, 31(12), 3206–3215.PubMedCrossRefGoogle Scholar
  7. Andrade, S. C., Novo, M., Kawauchi, G. Y., Worsaae, K., Pleijel, F., Giribet, G., & Rouse, G. W. (2015). Articulating “archiannelids”: phylogenomics and annelid relationships, with emphasis on meiofaunal taxa. Molecular Biology and Evolution, msv157.Google Scholar
  8. Ax, P. (1989). Basic phylogenetic systematization of the Metazoa. In B. Fernholm, K. Bremer, & H. Jornvall (Eds.), The hierarchy of life (pp. 229–245). Amsterdam: Elsevier.Google Scholar
  9. Ax, P. (2001). Das System der Metazoa III: ein Lehrbuch der phylogenetischen Systematik. Heidelberg: Spektrum Akademischer Verlag.Google Scholar
  10. Baguñà, J., Martinez, P., Paps, J., & Riutort, M. (2008). Back in time: a new systematic proposal for the Bilateria. Philosophical Transactions of the Royal Society, B: Biological Sciences, 363, 1481–1491.PubMedCentralCrossRefGoogle Scholar
  11. Bekkouche, N., Kristensen, R. M., Hejnol, A., Sørensen, M. V., & Worsaae, K. (2014). Detailed reconstruction of the musculature in Limnognathia maerski (Micrognathozoa) and comparison with other Gnathifera. Frontiers in Zoology, 11(1), 71.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Blanquart, S., & Lartillot, N. (2006). A Bayesian compound stochastic process for modeling nonstationary and nonhomogeneous sequence evolution. Molecular Biology and Evolution, 23(11), 2058–2071.PubMedCrossRefGoogle Scholar
  13. Blanquart, S., & Lartillot, N. (2008). A site-and time-heterogeneous model of amino acid replacement. Molecular Biology and Evolution, 25(5), 842–858.PubMedCrossRefGoogle Scholar
  14. Bleidorn, C., Podsiadlowski, L., Zhong, M., Eeckhaut, I., Hartmann, S., Halanych, K. M., & Tiedemann, R. (2009). On the phylogenetic position of Myzostomida: can 77 genes get it wrong? BMC Evolutionary Biology, 9, 150.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Brocco, S. L., O’Clair, R. M., & Cloney, R. A. (1974). Cephalopod integument: the ultrastructure of Kölliker’s organs and their relationship to setae. Cell and Tissue Research, 151, 293–308.PubMedCrossRefGoogle Scholar
  16. Brunet, T., Lauri, A., & Arendt, D. (2015). Did the notochord evolve from an ancient axial muscle? The axochord hypothesis. Bioessays, 37(8), 836–850.PubMedCrossRefGoogle Scholar
  17. Brusca, R. C., & Brusca, G. J. (2003). Invertebrates. Sunderland: Sinauer Associates.Google Scholar
  18. Caron, J. B., Scheltema, A., Schander, C., & Rudkin, D. (2006). A soft-bodied mollusc with radula from the Middle Cambrian Burgess Shale. Nature, 442(7099), 159–163.PubMedCrossRefGoogle Scholar
  19. Cavalier-Smith, T. (1998). A revised six-kingdom system of life. Biological Reviews, 73, 203–266.PubMedCrossRefGoogle Scholar
  20. Cohen, B. L. (2000). Monophyly of brachiopods and phoronids: reconciliation of molecular evidence with Linnaean classification (the subphylum Phoroniformea nov.). Proceedings of the Royal Society of London, Series B: Biological Sciences, 267, 225–231.CrossRefGoogle Scholar
  21. Cohen, B. L. (2013). Rerooting the rDNA gene tree reveals phoronids to be “brachiopods without shells”; dangers of wide taxon samples in metazoan phylogenetics (Phoronida; Brachiopoda). Zoological Journal of the Linnean Society, 167, 82–92.CrossRefGoogle Scholar
  22. Cohen, B. L., & Weydmann, A. (2005). Molecular evidence that phoronids are a subtaxon of brachiopods (Brachiopoda: Phoronata) and that genetic divergence of metazoan phyla began long before the early Cambrian. Organisms, Diversity and Evolution, 5, 253–273.CrossRefGoogle Scholar
  23. Cohen, B. L., Gawthrop, A., & Cavalier-Smith, T. (1998). Molecular phylogeny of brachiopods and phoronids based on nuclear-encoded small subunit ribosomal RNA gene sequences. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 353, 2039–2061.CrossRefGoogle Scholar
  24. Criscuolo, A., & Gribaldo, S. (2010). BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evolutionary Biology, 10(1), 210.PubMedPubMedCentralCrossRefGoogle Scholar
  25. De Rosa, R., Grenier, J. K., Andreeva, T., Cook, C. E., Adoutte, A., Akam, M., Caroll, S. B., & Balavoine, G. (1999). Hox genes in brachiopods and priapulids and protostome evolution. Nature, 399(6738), 772–776.PubMedCrossRefGoogle Scholar
  26. dos Reis, M., Thawornwattana, Y., Angelis, K., Telford, M. J., Donoghue, P. C., & Yang, Z. (2015). Uncertainty in the timing of origin of animals and the limits of precision in molecular timescales. Current Biology, 25, 2939–2950.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Dunn, C. W., Hejnol, A., Matus, D. Q., Pang, K., Browne, W. E., Smith, S. A., et al. (2008). Broad phylogenomic sampling improves resolution of the animal tree of life. Nature, 452, 745–749.PubMedCrossRefGoogle Scholar
  28. Dunn, C. W., Giribet, G., Edgecombe, G. D., & Hejnol, A. (2014). Animal phylogeny and its evolutionary implications*. Annual Review of Ecology, Evolution, and Systematics, 45, 371–395.Google Scholar
  29. Edgecombe, G. D., Giribet, G., Dunn, C. W., Hejnol, A., Kristensen, R. M., Neves, R. C., Rouse, G. W., Worsaae, K., & Sørensen, M. V. (2011). Higher-level metazoan relationships: recent progress and remaining questions. Organisms, Diversity and Evolution, 11, 151.CrossRefGoogle Scholar
  30. Egger, B., Lapraz, F., Tomiczek, B., Müller, S., Dessimoz, C., Girstmair, J., Škunca, N., Rawlinson, K. A., Cameron, C. B., Beli, E., Todaro, M. A., Gammoudi, M., Noreña, C., & Telford, M. J. (2015). A transcriptomic-phylogenomic analysis of the evolutionary relationships of flatworms. Current Biology, 25(10), 1347–1353.Google Scholar
  31. Emig, C. (1984). On the origin of the Lophophorata. Journal of Zoological Systematics and Evolutionary Research, 22(2), 91–94.CrossRefGoogle Scholar
  32. Faircloth, B. C., McCormack, J. E., Crawford, N. G., Harvey, M. G., Brumfield, R. T., & Glenn, T. C. (2012). Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales. Systematic Biology, 61(5), 717–726.PubMedCrossRefGoogle Scholar
  33. Faircloth, B. C., Branstetter, M. G., White, N. D., & Brady, S. G. (2015). Target enrichment of ultraconserved elements from arthropods provides a genomic perspective on relationships among Hymenoptera. Molecular Ecology Resources, 15(3), 489–501.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Fuchs, J., Iseto, T., Hirose, M., Sundberg, P., & Obst, M. (2010). The first internal molecular phylogeny of the animal phylum Entoprocta (Kamptozoa). Molecular Phylogenetics and Evolution, 56, 370–379.PubMedCrossRefGoogle Scholar
  35. Funch, P., & Kristensen, R. M. (1995). Cycliophora is a new phylum with affinities to Entoprocta and Ectoprocta. Nature, 378, 711–714.CrossRefGoogle Scholar
  36. Funch, P., Sørensen, M. V., & Obst, M. (2005). On the phylogenetic position of Rotifera—have we come any further? Hydrobiologia, 546, 11–28.CrossRefGoogle Scholar
  37. Garcia-Fernàndez, J., & Holland, P. W. H. (1994). Archetypal organization of the amphioxus Hox gene cluster. Nature, 370, 563–566.PubMedCrossRefGoogle Scholar
  38. Gervais, M. (1837). Recherches sur les polypes d’eau douche des generes Plumatella, Cristatella, et. Paludicola. Annales des Sciences Naturelles Series 2, 7, 49–93.Google Scholar
  39. GIGA Community of Scientists, Bracken-Grissom, H., Collins, A. G., Collins, T., Crandall, K., Distel, D., Dunn, C., Giribet, G., Haddock, S., Knowlton, N., Martindale, M., Medina, M., Messing, C., O’Brien, S. J., Paulay, G., Putnam, N., Ravasi, T., Rouse, G. W., Ryan, J. F., Schulze, A., Wörheide, G., Adamska, M., Bailly, X., Breinholt, J., Browne, W. E., Diaz, M. C., Evans, N., Flot, J. F., Fogarty, N., Johnston, M., Kamel, B., Kawahara, A. Y., Laberge, T., Lavrov, D., Michonneau, F., Moroz, L. L., Oakley, T., Osborne, K., Pomponi, S. A., Rhodes, A., Santos, S. R., Satoh, N., Thacker, R. W., Van de Peer, Y., Voolstra, C. R., Welch, D. M., Winston, J., & Zhou, X. (2014). The Global Invertebrate Genomics Alliance (GIGA): developing community resources to study diverse invertebrate genomes. The Journal of Heredity, 105(1), 1–18.PubMedCentralCrossRefGoogle Scholar
  40. Giribet, G. (2008). Assembling the lophotrochozoan (=spiralian) tree of life. Philosophical Transactions of the Royal Society, B: Biological Sciences, 363, 1513–1522.PubMedCentralCrossRefGoogle Scholar
  41. Giribet, G. (2015). New animal phylogeny: future challenges for animal phylogeny in the age of phylogenomics. Organisms Diversity & Evolution. doi: 10.1007/s13127-015-0235-4.Google Scholar
  42. Giribet, G., Distel, D. L., Polz, M., Sterrer, W., & Wheeler, W. C. (2000). Triploblastic relationships with emphasis on the acoelomates and the position of Gnathostomulida, Cycliophora, Plathelminthes, and Chaetognatha: a combined approach of 18S rDNA sequences and morphology. Systematic Biology, 49, 539–562.PubMedCrossRefGoogle Scholar
  43. Giribet, G., Sørensen, M. V., Funch, P., Kristensen, R. M., & Sterrer, W. (2004). Investigations into the phylogenetic position of Micrognathozoa using four molecular loci. Cladistics, 20, 1–3.CrossRefGoogle Scholar
  44. Giribet, G., Dunn, C. W., Edgecombe, G. D., & Rouse, G. W. (2007). A modern look at the animal tree of life. Zootaxa, 1668, 61–79.Google Scholar
  45. Giribet, G., Dunn, C. W., Edgecombe, G. D., Hejnol, A., Martindale, M. Q., & Rouse, G. W. (2009). Assembling the spiralian tree of life. In M. J. Telford & D. T. J. Littlewood (Eds.), Animal evolution: genes, genomes, fossils and trees (pp. 52–64). Oxford: Oxford University Press.CrossRefGoogle Scholar
  46. Glenner, H., Hansen, A. J., Sørensen, M. V., Ronquist, F., Huelsenbeck, J. P., & Willerslev, E. (2004). Bayesian inference of the metazoan phylogeny: a combined molecular and morphological approach. Current Biology, 14, 1644–1649.PubMedCrossRefGoogle Scholar
  47. Golombek, A., Tobergte, S., Nesnidal, M. P., Purschke, G., & Struck, T. H. (2013). Mitochondrial genomes to the rescue—Diurodrilidae in the myzostomid trap. Molecular Phylogenetics and Evolution, 68(2), 312–326.PubMedCrossRefGoogle Scholar
  48. Golombek, A., Tobergte, S., & Struck, T. H. (2015). Elucidating the phylogenetic position of Gnathostomulida and first mitochondrial genomes of Gnathostomulida, Gastrotricha and Polycladida (Platyhelminthes). Molecular Phylogenetics and Evolution, 86, 49–63.PubMedCrossRefGoogle Scholar
  49. González, V. L., Andrade, S. C., Bieler, R., Collins, T. M., Dunn, C. W., Mikkelsen, P. M., Taylor, J. D., & Giribet, G. (2015). A phylogenetic backbone for Bivalvia: an RNA-seq approach. Proceedings of the Royal Society of London B: Biological Sciences, 282(1801), 20142332.CrossRefGoogle Scholar
  50. Gonzalez-Cueto, J., Escarraga-Fajardo, M. E., Lagos, A. M., Quiroga, S., & Castro, L. R. (2015). The complete mitochondrial genome of Micrura ignea Schwartz & Norenburg 2005 (Nemertea: Heteronemertea) and comparative analysis with other nemertean mitogenomes. Marine Genomics, 20, 33–37.PubMedCrossRefGoogle Scholar
  51. Gordon, D. P. (1975). The resemblance of bryozoan gizzard teeth to “annelid-like” setae. Acta Zoologica, 56, 283–289.CrossRefGoogle Scholar
  52. Gruhl, A. (2009). Serotonergic and FMRFamidergic nervous systems in gymnolaemate bryozoan larvae. Zoomorphology, 128, 135–156.CrossRefGoogle Scholar
  53. Gustus, R. M., & Cloney, R. A. (1972). Ultrastructural similarities between setae of brachiopods and polychaetes. Acta Zoologica, 53, 229–233.CrossRefGoogle Scholar
  54. Halanych, K. M. (1996). Convergence in the feeding apparatuses of lophophorates and pterobranch hemichordates revealed by 18S rDNA: an interpretation. The Biological Bulletin, 190, 1–5.CrossRefGoogle Scholar
  55. Halanych, K. M. (2004). The new view of animal phylogeny. Annual Review of Ecology, Evolution, and Systematics, 35, 229–256.CrossRefGoogle Scholar
  56. Halanych, K. M., Bacheller, J. D., Aguinaldo, A. M., Liva, S. M., Hillis, D. M., & Lake, J. A. (1995). Evidence from 18S ribosomal DNA that the lophophorates are protostome animals. Science, 267, 1641.PubMedCrossRefGoogle Scholar
  57. Hanelt, B., Van Schyndel, D., Adema, C. M., Lewis, L. A., & Loker, E. S. (1996). The phylogenetic position of Rhopalura ophiocomae (Orthonectida) based on 18S ribosomal DNA sequence analysis. Molecular Biology and Evolution, 13(9), 1187–1191.PubMedCrossRefGoogle Scholar
  58. Hartmann, S., Helm, C., Nickel, B., Meyer, M., Struck, T. H., Tiedemann, R., Selbig, J., & Bleidorn, C. (2012). Exploiting gene families for phylogenomic analysis of myzostomid transcriptome data. PloS One, 7, e29843.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Haszprunar, G., & Wanninger, A. (2008). On the fine structure of the creeping larva of Loxosomella murmanica: additional evidence for a clade of Kamptozoa (Entoprocta) and Mollusca. Acta Zoologica, 89(2), 137–148.CrossRefGoogle Scholar
  60. Haszprunar, G., Schander, C., & Halanych, K. M. (2008). Relationships of higher molluscan taxa. In W. F. Ponder & D. R. Lindberg (Eds.), Phylogeny and evolution of the Mollusca (pp. 19–32). Berkeley: University of California Press.Google Scholar
  61. Hatschek, B. (1878). Studien über Entwicklungsgeschichte der Anneliden: Ein Beitrag zur Morphologie der Bilaterien. A. Hölder.Google Scholar
  62. Hausdorf, B., Helmkampf, M., Meyer, A., Witek, A., Herlyn, H., Bruchhaus, I., Hankeln, T., Struck, T. H., & Lieb, B. (2007). Spiralian phylogenomics supports the resurrection of Bryozoa comprising Ectoprocta and Entoprocta. Molecular Biology and Evolution, 24, 2723.PubMedCrossRefGoogle Scholar
  63. Hausdorf, B., Helmkampf, M., Nesnidal, M. P., & Bruchhaus, I. (2010). Phylogenetic relationships within the lophophorate lineages (Ectoprocta, Brachiopoda and Phoronida). Molecular Phylogenetics and Evolution, 55, 1121–1127.PubMedCrossRefGoogle Scholar
  64. Hay-Schmidt, A. (2000). The evolution of the serotonergic nervous system. Proceedings of the Royal Society B: Biological Sciences, 267, 1071–1079.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Hejnol, A. (2010). A twist in time—the evolution of spiral cleavage in the light of animal phylogeny. Integrative and Comparative Biology, 50(5), 695–706.PubMedCrossRefGoogle Scholar
  66. Hejnol, A., & Martindale, M. Q. (2009). The mouth, the anus and the blastopore-open questions about questionable openings. Animal Evolution: Genomes, Fossils, and Trees, 33–40.Google Scholar
  67. Hejnol, A., & Lowe, C. J. (2015). Embracing the comparative approach: how robust phylogenies and broader developmental sampling impacts the understanding of nervous system evolution. Philosophical Transactions of the Royal Society B, 370(1684), 20150045.CrossRefGoogle Scholar
  68. Hejnol, A., & Martín-Durán, J. M. (2015). Getting to the bottom of anal evolution. Zoologischer Anzeiger, 256, 61–74.CrossRefGoogle Scholar
  69. Hejnol, A., Obst, M., Stamatakis, A., Ott, M., Rouse, G. W., Edgecombe, G. D., et al. (2009). Assessing the root of bilaterian animals with scalable phylogenomic methods. Proceedings of the Royal Society B: Biological Sciences, 276, 4261.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Helfenbein, K. G., & Boore, J. L. (2004). The mitochondrial genome of Phoronis architecta—comparisons demonstrate that phoronids are lophotrochozoan protostomes. Molecular Biology and Evolution, 21(1), 153–157.PubMedCrossRefGoogle Scholar
  71. Helfenbein, K. G., Fourcade, H. M., Vanjani, R. G., & Boore, J. L. (2004). The mitochondrial genome of Paraspadella gotoi is highly reduced and reveals that chaetognaths are a sister group to protostomes. Proceedings of the National Academy of Sciences of the United States of America, 101(29), 10639–10643.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Helm, C., Bernhart, S. H., Siederdissen, C. H., Nickel, B., & Bleidorn, C. (2012). Deep sequencing of small RNAs confirms an annelid affinity of Myzostomida. Molecular Phylogenetics and Evolution, 64(1), 198–203.PubMedCrossRefGoogle Scholar
  73. Helmkampf, M., Bruchhaus, I., & Hausdorf, B. (2008a). Phylogenomic analyses of lophophorates (brachiopods, phoronids and bryozoans) confirm the Lophotrochozoa concept. Proceedings of the Royal Society B: Biological Sciences, 275, 1927.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Helmkampf, M., Bruchhaus, I., & Hausdorf, B. (2008b). Multigene analysis of lophophorate and chaetognath phylogenetic relationships. Molecular Phylogenetics and Evolution, 46(1), 206–214.PubMedCrossRefGoogle Scholar
  75. Hochberg, R., & Litvaitis, M. K. (2000). Phylogeny of Gastrotricha: a morphology-based framework of gastrotrich relationships. The Biological Bulletin, 198(2), 299–305.PubMedCrossRefGoogle Scholar
  76. Hyman, L. H. (1959). The invertebrates: smaller coelomate groups. Columbus: McGraw-Hill.Google Scholar
  77. Isowa, Y., Sarashina, I., Oshima, K., Kito, K., Hattori, M., & Endo, K. (2015). Proteome analysis of shell matrix proteins in the brachiopod Laqueus rubellus. Proteome Science, 13(1), 21.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Jackson, D. J., McDougall, C., Woodcroft, B., Moase, P., Rose, R. A., Kube, M., Reinhardt, R., Rokhsar, D. S., Montagnani, C., Joubert, C., Piquemal, D., & Degnan, B. M. (2010). Parallel evolution of nacre building gene sets in molluscs. Molecular Biology and Evolution, 27, 591–608.PubMedCrossRefGoogle Scholar
  79. Jackson, D. J., Mann, K., Häussermann, V., Schilhabel, M. B., Lüter, C., Griesshaber, E., Schmahl, W., & Wörheide, G. (2015). The Magellania venosa biomineralizing proteome: a window into brachiopod shell evolution. Genome Biology and Evolution, 7(5), 1349–1362.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Kenny, N. J., Namigai, E. K., Marlétaz, F., Hui, J. H., & Shimeld, S. M. (2015). Draft genome assemblies and predicted microRNA complements of the intertidal lophotrochozoans Patella vulgata (Mollusca, Patellogastropoda) and Spirobranchus (Pomatoceros) lamarcki (Annelida, Serpulida). Marine Genomics. doi: 10.1016/j.margen.2015.07.004.PubMedGoogle Scholar
  81. Knauss, E. B. (1979). Indication of an anal pore in Gnathostomulida. Zoologica Script, 8, 181–186.CrossRefGoogle Scholar
  82. Kobayashi, M., Furuya, H., & Holland, P. W. (1999). Dicyemids are higher animals. Nature, 401(6755), 762.PubMedGoogle Scholar
  83. Kocot, K. M. (2013a). Recent advances and unanswered questions in deep molluscan phylogenetics. American Malacological Bulletin, 31(1), 195–208.CrossRefGoogle Scholar
  84. Kocot, K. M. (2013b). A combined approach toward resolving the phylogeny of Mollusca. Doctoral dissertation: Auburn University.Google Scholar
  85. Kocot, K. M., & Todt, C. (2014). Three new meiofaunal solenogaster species (Mollusca: Aplacophora) from the north-east Pacific. Journal of Natural History, 48(45–48), 3007–3031.CrossRefGoogle Scholar
  86. Kocot, K. M., Cannon, J. T., & Halanych, K. M. (2010). Elucidating animal phylogeny. In R. DeSalle & B. Schierwater (Eds.), Key transitions in animal evolution (pp. 15–33). Boca Raton: CRC Press.CrossRefGoogle Scholar
  87. Kocot, K. M., Cannon, J. T., Todt, C., Citarella, M. R., Kohn, A. B., Meyer, A., et al. (2011). Phylogenomics reveals deep molluscan relationships. Nature, 477, 452–456.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Kristensen, R. M., & Funch, P. (2000). Micrognathozoa: a new class with complicated jaws like those of Rotifera and Gnathostomulida. Journal of Morphology, 246, 1–49.PubMedCrossRefGoogle Scholar
  89. Kück, P., & Struck, T. H. (2014). BaCoCa—a heuristic software tool for the parallel assessment of sequence biases in hundreds of gene and taxon partitions. Molecular Phylogenetics and Evolution, 70, 94–98.PubMedCrossRefGoogle Scholar
  90. Kvist, S., Laumer, C. E., Junoy, J., & Giribet, G. (2014a). New insights into the phylogeny, systematics and DNA barcoding of Nemertea. Invertebrate Systematics, 28(3), 287–308.CrossRefGoogle Scholar
  91. Kvist, S., Laumer, C. E., Junoy, J., & Giribet, G. (2014b). A further contribution to the phylogeny and systematics of Nemertea: increased sampling for Hubrechtidae, a discussion on Plectonemertidae and a phylum-wide barcoding gap detection assessment. Invertebrate Systematics [Internet], 28, 287–308.CrossRefGoogle Scholar
  92. Lartillot, N., & Philippe, H. (2004). A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Molecular Biology and Evolution, 21(6), 1095–1109.PubMedCrossRefGoogle Scholar
  93. Laumer, C. E., Bekkouche, N., Kerbl, A., Goetz, F., Neves, R. C., Sørensen, M. V., Kristensen, R.M., Hejnol, A., Dunn, C.W., Giribet, G., & Worsaae, K. (2015). Spiralian phylogeny informs the evolution of microscopic lineages. Current Biology, 25(15), 2000–2006.Google Scholar
  94. Lauri, A., Brunet, T., Handberg-Thorsager, M., Fischer, A. H., Simakov, O., Steinmetz, P. R., Tomer, R., Keller, P. J., & Arendt, D. (2014). Development of the annelid axochord: insights into notochord evolution. Science, 345(6202), 1365–1368.PubMedCrossRefGoogle Scholar
  95. Lehmann, J., Stadler, P. F., & Krauss, V. (2013). Near intron pairs and the metazoan tree. Molecular Phylogenetics and Evolution, 66(3), 811–823.PubMedCrossRefGoogle Scholar
  96. Lemer, S., Kawauchi, G. Y., Andrade, S. C., González, V. L., Boyle, M. J., & Giribet, G. (2015). Re-evaluating the phylogeny of Sipuncula through transcriptomics. Molecular Phylogenetics and Evolution, 83, 174–183.PubMedCrossRefGoogle Scholar
  97. Lemmon, A. R., Emme, S. A., & Lemmon, E. M. (2012). Anchored hybrid enrichment for massively high-throughput phylogenomics. Systematic Biology, 61(5), 727–744.PubMedCrossRefGoogle Scholar
  98. Li, C., Hofreiter, M., Straube, N., Corrigan, S., & Naylor, G. J. (2013). Capturing protein-coding genes across highly divergent species. Biotechniques, 54(6), 321–326.PubMedGoogle Scholar
  99. Li, Y., Kocot, K. M., Schander, C., Santos, S. R., Thornhill, D. J., & Halanych, K. M. (2015). Mitogenomics reveals phylogeny and repeated motifs in control regions of the deep-sea family Siboglinidae (Annelida). Molecular Phylogenetics and Evolution, 85, 221–229.PubMedCrossRefGoogle Scholar
  100. Luo, H., Arndt, W., Zhang, Y., Shi, G., Alekseyev, M. A., Tang, J., Hughes, A. L., & Friedman, R. (2012). Phylogenetic analysis of genome rearrangements among five mammalian orders. Molecular Phylogenetics and Evolution, 65(3), 871–882.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Luo, Y. J., Takeuchi, T., Koyanagi, R., Yamada, L., Kanda, M., Khalturina, M., Manabu Fujie, M., Yamasaki, S., Endo, K., & Satoh, N. (2015). The Lingula genome provides insights into brachiopod evolution and the origin of phosphate biomineralization. Nature Communications. doi: 10.1038/ncomms9301.Google Scholar
  102. Lüter, C., & Bartolomaeus, T. (1997). The phylogenetic position of Brachiopoda—a comparison of morphological and molecular data. Zoologica Scripta, 26, 245–253.CrossRefGoogle Scholar
  103. Mackey, L. Y., Winnepenninckx, B., De Wachter, R., Backeljau, T., Emschermann, P., & Garey, J. R. (1996). 18S rRNA suggests that Entoprocta are protostomes, unrelated to Ectoprocta. Journal of Molecular Evolution, 42, 552–559.PubMedCrossRefGoogle Scholar
  104. Mallatt, J., Craig, C. W., & Yoder, M. J. (2012). Nearly complete rRNA genes from 371 Animalia: updated structure-based alignment and detailed phylogenetic analysis. Molecular Phylogenetics and Evolution, 64(3), 603–617.PubMedCrossRefGoogle Scholar
  105. Marlétaz, F., Martin, E., Perez, Y., Papillon, D., Caubit, X., Lowe, C. J., et al. (2006). Chaetognath phylogenomics: a protostome with deuterostome-like development. Current Biology, 16(15), R577–R578.PubMedCrossRefGoogle Scholar
  106. Marlétaz, F., Gilles, A., Caubit, X., Perez, Y., Dossat, C., Samain, S., Gyapay, G., Wincker, P., & Le Parco, Y. (2008). Chaetognath transcriptome reveals ancestral and unique features among bilaterians. Genome Biology, 9(6), R94.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Martínez, A., Di Domenico, M., Rouse, G. W., & Worsaae, K. (2015). Phylogeny and systematics of Protodrilidae (Annelida) inferred with total evidence analyses. Cladistics, 31(3), 250–276.CrossRefGoogle Scholar
  108. Maslakova, S. A., Martindale, M. Q., & Norenburg, J. L. (2004). Vestigial prototroch in a basal nemertean, Carinoma tremaphoros (Nemertea; Palaeonemertea). Evolution and Development, 6, 219–226.PubMedCrossRefGoogle Scholar
  109. Matus, D. Q., Copley, R. R., Dunn, C. W., Hejnol, A., Eccleston, H., Halanych, K. M., et al. (2006). Broad taxon and gene sampling indicate that chaetognaths are protostomes. Current Biology, 16(15), R575–R576.PubMedCrossRefGoogle Scholar
  110. McHugh, D. (1997). Molecular evidence that echiurans and pogonophorans are derived annelids. Proceedings of the National Academy of Sciences, 94(15), 8006–8009.CrossRefGoogle Scholar
  111. Merkel, J., Lieb, B., & Wanninger, A. (2015). Muscular anatomy of an entoproct creeping-type larva reveals extraordinary high complexity and potential shared characters with mollusks. BMC Evolutionary Biology, 15(1), 130.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Minelli, A. (2009). Perspectives in animal phylogeny and evolution. Oxford: Oxford University Press.Google Scholar
  113. Nesnidal, M. P., Helmkampf, M., Bruchhaus, I., & Hausdorf, B. (2010). Compositional heterogeneity and phylogenomic inference of metazoan relationships. Molecular Biology and Evolution, 27(9), 2095–2104.PubMedCrossRefGoogle Scholar
  114. Nesnidal, M. P., Helmkampf, M., Meyer, A., Witek, A., Bruchhaus, I., Ebersberger, I., Hankeln, T., Lieb, B., Struck, T. H., & Hausdorf, B. (2013). New phylogenomic data support the monophyly of Lophophorata and an Ectoproct-Phoronid clade and indicate that Polyzoa and Kryptrochozoa are caused by systematic bias. BMC Evolutionary Biology, 13(1), 253.PubMedPubMedCentralCrossRefGoogle Scholar
  115. Nesnidal, M. P., Helmkampf, M., Bruchhaus, I., Ebersberger, I., & Hausdorf, B. (2014). Lophophorata monophyletic—after all. In J. W. Wagele & T. Bartolomaeus (Eds.), Deep metazoan phylogeny: the backbone of the tree of life (pp. 127–142). Berlin: Degruyter.Google Scholar
  116. Nielsen, C. (1971). Entoproct life-cycles and the entoproct/ectoproct relationship. Ophelia, 9, 209–341.CrossRefGoogle Scholar
  117. Nielsen, C. (1977). The relationships of Entoprocta, Ectoprocta and Phoronida. American Zoologist, 17, 149–150.CrossRefGoogle Scholar
  118. Nielsen, C. (1985). Animal phylogeny in the light of the trochaea theory. Biological Journal of the Linnean Society, 23, 243–299.CrossRefGoogle Scholar
  119. Nielsen, C. (1987). Structure and function of metazoan ciliary bands and their phylogenetic significance. Acta Zoologica, 68, 205–262.CrossRefGoogle Scholar
  120. Nielsen, C. (2012). Animal evolution: interrelationships of the living phyla. Oxford: Oxford University Press.Google Scholar
  121. Nielsen, C., & Worsaae, K. (2010). Structure and occurrence of cyphonautes larvae (Bryozoa, Ectoprocta). Journal of Morphology, 271, 1094–1109.PubMedCrossRefGoogle Scholar
  122. Orrhage, L. (1971). Light and electron microscope studies of some annelid setae. Acta Zoologica, 52, 157–169.CrossRefGoogle Scholar
  123. Orrhage, L. (1973). Light and electron microscope studies of some brachiopod and pogonophoran setae. Zoomorphology, 74, 253–270.Google Scholar
  124. Papillon, D., Perez, Y., Caubit, X., & Le Parco, Y. (2004). Identification of chaetognaths as protostomes is supported by the analysis of their mitochondrial genome. Molecular Biology and Evolution, 21(11), 2122–2129.PubMedCrossRefGoogle Scholar
  125. Paps, J., Bagunà, J., & Riutort, M. (2009a). Bilaterian phylogeny: a broad sampling of 13 nuclear genes provides a new Lophotrochozoa phylogeny and supports a paraphyletic basal Acoelomorpha. Molecular Biology and Evolution, 26, 2397–2406.PubMedCrossRefGoogle Scholar
  126. Paps, J., Baguñà, J., & Riutort, M. (2009b). Lophotrochozoa internal phylogeny: new insights from an up-to-date analysis of nuclear ribosomal genes. Proceedings of the Royal Society B: Biological Sciences, 276, 1245–1254.PubMedPubMedCentralCrossRefGoogle Scholar
  127. Passamaneck, Y., & Halanych, K. M. (2006). Lophotrochozoan phylogeny assessed with LSU and SSU data: evidence of lophophorate polyphyly. Molecular Phylogenetics and Evolution, 40, 20–28.PubMedCrossRefGoogle Scholar
  128. Pawlowski, J., Montoya-Burgos, J. I., Fahrni, J. F., Wüest, J., & Zaninetti, L. (1996). Origin of the Mesozoa inferred from 18S rRNA gene sequences. Molecular Biology and Evolution, 13(8), 1128–1132.PubMedCrossRefGoogle Scholar
  129. Peel, J. S. (2010). A corset-like fossil from the Cambrian Sirius Passet Lagerstätte of North Greenland and its implications for cycloneuralian evolution. Journal of Paleontology, 84, 332–340.CrossRefGoogle Scholar
  130. Peel, J. S., Stein, M., & Kristensen, R. M. (2013). Life cycle and morphology of a Cambrian stem-lineage loriciferan. PloS One, 8(8), e73583.PubMedPubMedCentralCrossRefGoogle Scholar
  131. Perez, Y., Müller, C. H., & Harzsch, S. (2014). The Chaetognatha: an anarchistic taxon between Protostomia and Deuterostomia. In J. W. Wagele & T. Bartolomaeus (Eds.), Deep metazoan phylogeny: the backbone of the tree of life (pp. 127–142). Berlin: Degruyter.Google Scholar
  132. Peterson, K. J., & Eernisse, D. J. (2001). Animal phylogeny and the ancestry of bilaterians: inferences from morphology and 18S rDNA gene sequences. Evolution and Development, 3, 170–205.PubMedCrossRefGoogle Scholar
  133. Petrov, N. B., Aleshin, V. V., Pegova, A. N., Ofitserov, M. V., & Slyusarev, G. S. (2010). New insight into the phylogeny of Mesozoa: evidence from the 18S and 28S rRNA genes. Moscow University Biological Sciences Bulletin, 65(4), 167–169.CrossRefGoogle Scholar
  134. Philippe, H., Lartillot, N., & Brinkmann, H. (2005). Multigene analyses of bilaterian animals corroborate the monophyly of Ecdysozoa, Lophotrochozoa, and Protostomia. Molecular Biology and Evolution, 22(5), 1246–1253.Google Scholar
  135. Philippe, H., Brinkmann, H., Martinez, P., Riutort, M., & Baguna, J. (2007). Acoel flatworms are not Platyhelminthes: evidence from phylogenomics. PloS One, 2(8), e717.PubMedPubMedCentralCrossRefGoogle Scholar
  136. Philippe, H., Brinkmann, H., Lavrov, D. V., Timothy, J., Littlewood, D., Manuel, M., Wörheide, G., & Baurain, D. (2011). Resolving difficult phylogenetic questions: why more sequences are not enough. PLoS Biology, 9(3), 402.CrossRefGoogle Scholar
  137. Pires, A., & Woollacott, R. M. (1997). Serotonin and dopamine have opposite effects on phototaxis in larvae of the bryozoan Bugula neritina. Biological Bulletin, 192, 399–409.CrossRefGoogle Scholar
  138. Pisani, D., & Liu, A. G. (2015). Animal evolution: only rocks can set clocks. Current Biology, 25, R1070–R1091.CrossRefGoogle Scholar
  139. Rieger, R. M. (1980). A new group of interstitial worms, Lobatocerebridae nov. fam. (Annelida) and its significance for metazoan phylogeny. Zoomorphologie, 95(1), 41–84.CrossRefGoogle Scholar
  140. Rieger, R. M. (1991). Jennaria pulchra, nov. gen. nov. spec., eine den psammobionten Anneliden nahestehende Gattung aus dem Küstengrundwasser von North Carolina. Berichte des Naturwissenschaftlich-Medizinischen Vereins in Innsbruck, 78, 203–215.Google Scholar
  141. Rieger, R. M., & Sterrer, W. (1975a). New spicular skeletons in Turbellaria, and the occurrence of spicules in marine meiofauna. Part I. Zeitschrift fur Zoologische Systematik und Evolutionsforschung., 13, 207–248.CrossRefGoogle Scholar
  142. Rieger, R. M., & Sterrer, W. (1975b). New spicular skeletons in Turbellaria, and the occurrence of spicules in marine meiofauna. Part II. Zeitschrift fur Zoologische Systematik und Evolutionsforschung., 13, 249–278.Google Scholar
  143. Rieger, V., Perez, Y., Müller, C. H., Lacalli, T., Hansson, B. S., & Harzsch, S. (2011). Development of the nervous system in hatchlings of Spadella cephaloptera (Chaetognatha), and implications for nervous system evolution in Bilateria. Development, Growth and Differentiation, 53(5), 740–759.PubMedCrossRefGoogle Scholar
  144. Rokas, A., & Holland, P. W. (2000). Rare genomic changes as a tool for phylogenetics. Trends in Ecology and Evolution, 15(11), 454–459.PubMedCrossRefGoogle Scholar
  145. Rokas, A., Kathirithamby, J., & Holland, P. W. H. (1999). Intron insertion as a phylogenetic character: the engrailed homeobox of Strepsiptera does not indicate affinity with Diptera. Insect Molecular Biology, 8(4), 527–530.PubMedCrossRefGoogle Scholar
  146. Roule, L. (1891). Considerations sur I’embranchement des Trochozoaires. Annales des sciences naturelles, Paris series, 7(11), 121–178.Google Scholar
  147. Rouse, G. W. (1999). Trochophore concepts: ciliary bands and the evolution of larvae in spiralian Metazoa. Biological Journal of the Linnean Society, 66, 411–464.CrossRefGoogle Scholar
  148. Rundell, R. J., & Leander, B. S. (2010). Masters of miniaturization: convergent evolution among interstitial eukaryotes. Bioessays, 32(5), 430–437.PubMedCrossRefGoogle Scholar
  149. Ruppert, E. E. (1991). Gastrotricha. In F. W. Harrison & E. E. Ruppert (Eds.), Microscopic anatomy of invertebrates (pp. 41–109). New York: Wiley-Liss.Google Scholar
  150. Ruppert, E. E., Fox, R. S., & Barnes, R. D. (2004). Invertebrate zoology (7th ed.). Belmont: Brooks/Coyle.Google Scholar
  151. Santagata, S. (2008). Evolutionary and structural diversification of the larval nervous system among marine bryozoans. Biological Bulletin, 215, 3–23.PubMedCrossRefGoogle Scholar
  152. Santagata, S., & Cohen, B. (2009). Phoronid phylogenetics (Brachiopoda; Phoronata): evidence from morphological cladistics, small and large subunit rDNA sequences, and mitochondrial cox1. Zoological Journal of the Linnean Society, 157, 34–50.CrossRefGoogle Scholar
  153. Scherholz, M., Redl, E., Wollesen, T., Todt, C., & Wanninger, A. (2013). Aplacophoran mollusks evolved from ancestors with polyplacophoran-like features. Current Biology, 23(21), 2130–2134.PubMedPubMedCentralCrossRefGoogle Scholar
  154. Scherholz, M., Redl, E., Wollesen, T., Todt, C., & Wanninger, A. (2015). From complex to simple: myogenesis in an aplacophoran mollusk reveals key traits in aculiferan evolution. BMC Evolutionary Biology, 15(1), 201.PubMedPubMedCentralCrossRefGoogle Scholar
  155. Schmidt-Rhaesa, A. (2008). The evolution of organ systems. Oxford: Oxford University Press.Google Scholar
  156. Schrödl, M., & Stöger, I. (2014). A review on deep molluscan phylogeny: old markers, integrative approaches, persistent problems. Journal of Natural History, 48(45–48), 2773–2804.CrossRefGoogle Scholar
  157. Schulze, A. (2002). Ultrastructure of opisthosomal chaetae in Vestimentifera (Pogonophora, Obturata) and implications for phylogeny. Acta Zoologica, 82, 127–135.CrossRefGoogle Scholar
  158. Shimizu, K., Hunter, E., & Fusetani, N. (2000). Localisation of biogenic amines in larvae of Bugula neritina (Bryozoa: Cheilostomatida) and their effects on settlement. Marine Biology, 136, 1–9.CrossRefGoogle Scholar
  159. Simakov, O., Marletaz, F., Cho, S. J., Edsinger-Gonzales, E., Havlak, P., Hellsten, U., Kuo, D. H., Larsson, T., Lv, J., Arendt, D., Savage, R., Osoegawa, K., de Jong, P., Grimwood, J., Chapman, J. A., Shapiro, H., Aerts, A., Otillar, R. P., Terry, A. Y., Boore, J. L., Grigoriev, I. V., Lindberg, D. R., Seaver, E. C., Weisblat, D. A., Putnam, N. H., & Rokhsar, D. S. (2013). Insights into bilaterian evolution from three spiralian genomes. Nature, 493(7433), 526–531.PubMedPubMedCentralCrossRefGoogle Scholar
  160. Sliusarev, G. S. (2008). Phylum Orthonectida: morphology, biology, and relationships to other multicellular animals. Zhurnal Obshcheĭ Biologii, 69, 403–427.PubMedGoogle Scholar
  161. Smith, S. A., Wilson, N. G., Goetz, F. E., Feehery, C., Andrade, S. C. S., Rouse, G. W., et al. (2011). Resolving the evolutionary relationships of molluscs with phylogenomic tools. Nature, 480, 364–367.PubMedCrossRefGoogle Scholar
  162. Sperling, E. A., Pisani, D., & Peterson, K. J. (2011). Molecular paleobiological insights into the origin of the Brachiopoda. Evolution and Development, 13, 290–303.PubMedCrossRefGoogle Scholar
  163. Struck, T. H. (2014). TreSpEx—detection of misleading signal in phylogenetic reconstructions based on tree information. Evolutionary Bioinformatics, 10, 51.CrossRefGoogle Scholar
  164. Struck, T. H., & Fisse, F. (2008). Phylogenetic position of Nemertea derived from phylogenomic data. Molecular Biology and Evolution, 25(4), 728–736.PubMedCrossRefGoogle Scholar
  165. Struck, T. H., Schult, N., Kusen, T., Hickman, E., Bleidorn, C., McHugh, D., & Halanych, K. M. (2007). Annelid phylogeny and the status of Sipuncula and Echiura. BMC Evolutionary Biology, 7, 57.PubMedPubMedCentralCrossRefGoogle Scholar
  166. Struck, T. H., Nesnidal, M. P., Purschke, G., & Halanych, K. M. (2008). Detecting possibly saturated positions in 18S and 28S sequences and their influence on phylogenetic reconstruction of Annelida (Lophotrochozoa). Molecular Phylogenetics and Evolution, 48(2), 628–645.PubMedCrossRefGoogle Scholar
  167. Struck, T. H., Paul, C., Hill, N., Hartmann, S., Hosel, C., Kube, M., Lieb, B., Meyer, A., Tiedemann, R., Purschke, G., & Bleidorn, C. (2011). Phylogenomic analyses unravel annelid evolution. Nature, 471, 95–98.PubMedCrossRefGoogle Scholar
  168. Struck, T. H., Wey-Fabrizius, A. R., Golombek, A., Hering, L., Weigert, A., Bleidorn, C., Klebow, S., Iakovenko, N., Hausdorf, B., Petersen, M., Kück, P., Herlyn, H., & Hankeln, T. (2014). Platyzoan paraphyly based on phylogenomic data supports a noncoelomate ancestry of Spiralia. Molecular Biology and Evolution, 31(7), 1833–1849.PubMedCrossRefGoogle Scholar
  169. Struck, T. H., Golombek, A., Weigert, A., Franke, F. A., Westheide, W., Purschke, G., Bleidorn, C., & Halanych, K. M. (2015). The evolution of annelids reveals two adaptive routes to the interstitial realm. Current Biology, 25(15), 1993–1999.PubMedCrossRefGoogle Scholar
  170. Stuart, A. (1955). A test for homogeneity of the marginal distributions in a two-way classification. Biometrika, 42, 412–416.CrossRefGoogle Scholar
  171. Summers, M. M., & Rouse, G. W. (2014). Phylogeny of Myzostomida (Annelida) and their relationships with echinoderm hosts. BMC Evolutionary Biology, 14(1), 170.PubMedPubMedCentralCrossRefGoogle Scholar
  172. Sutton, M. D., & Sigwart, J. D. (2012). A chiton without a foot. Palaeontology, 55(2), 401–411.CrossRefGoogle Scholar
  173. Sutton, M. D., Briggs, D. E., Siveter, D. J., Siveter, D. J., & Sigwart, J. D. (2012). A Silurian armoured aplacophoran and implications for molluscan phylogeny. Nature, 490(7418), 94–97.PubMedCrossRefGoogle Scholar
  174. Suzuki, T. G., Ogino, K., Tsuneki, K., & Furuya, H. (2010). Phylogenetic analysis of dicyemid mesozoans (phylum Dicyemida) from innexin amino acid sequences: dicyemids are not related to Platyhelminthes. Journal of Parasitology, 96(3), 614–625.PubMedCrossRefGoogle Scholar
  175. Szabó, R., Calder, A. C., & Ferrier, D. E. (2014). Biomineralisation during operculum regeneration in the polychaete Spirobranchus lamarcki. Marine Biology, 161, 2621–2629.CrossRefGoogle Scholar
  176. Taylor, P. D., Vinn, O., & Wilson, M. A. (2010). Evolution of biomineralization in ‘Lophophorates’. Paleontology, 84, 317–333.Google Scholar
  177. Taylor, P. D., Lombardi, C., & Cocito, S. (2014). Biomineralization in bryozoans: present, past and future. Biological Reviews. doi: 10.1111/brv.12148.Google Scholar
  178. Temereva, E., & Wanninger, A. (2012). Development of the nervous system in Phoronopsis harmeri (Lophotrochozoa, Phoronida) reveals both deuterostome- and trochozoan-like features. BMC Evolutionary Biology, 12(1), 121.PubMedPubMedCentralCrossRefGoogle Scholar
  179. Thomas, R. D. K., & Vinther, J. (2012). Implications of the occurrence of paired anterior chaetae in the Late Early Cambrian mollusc Pelagiella from the Kinziers Formation of Pennsylvania for relationships among taxa and early evolution of the Mollusca. Geological Society of America Abstract Programs, 44, 326.Google Scholar
  180. Thompson, J. V. (2014). On Polyzoa, a new animal discovered as an inhabitant of some Zoophites—with a description of the newly instituted genera of Pedicellaria and Vesicularia, and their species.Google Scholar
  181. Thomson, R. C., Plachetzki, D. C., Mahler, D. L., & Moore, B. R. (2014). A critical appraisal of the use of microRNA data in phylogenetics. Proceedings of the National Academy of Sciences, 111(35), E3659–E3668.CrossRefGoogle Scholar
  182. Todaro, M. A., Telford, M. J., Lockyer, A. E., & Littlewood, D. T. J. (2006). Interrelationships of the Gastrotricha and their place among the Metazoa inferred from 18S rRNA genes. Zoologica Scripta, 35, 251–259.CrossRefGoogle Scholar
  183. Vinther, J. (2015). Animal evolution: when small worms cast long phylogenetic shadows. Current Biology, 25(17), R762–R764.PubMedCrossRefGoogle Scholar
  184. Vinther, J., Sperling, E. A., Briggs, D. E., & Peterson, K. J. (2012). A molecular palaeobiological hypothesis for the origin of aplacophoran molluscs and their derivation from chiton-like ancestors. Proceedings of the Royal Society of London B: Biological Sciences, 279(1732), 1259–1268.CrossRefGoogle Scholar
  185. Voronezhskaya, E. E., Tyurin, S. A., & Nezlin, L. P. (2002). Neuronal development in larval chiton Ischnochiton hakodadensis (Mollusca: Polyplacophora). Journal of Comparative Neurology, 444, 25–38.PubMedCrossRefGoogle Scholar
  186. Voronezhskaya, E. E., Tsitrin, E. B., & Nezlin, L. P. (2003). Neuronal development in larval polychaete Phyllodoce maculata (Phyllodocidae). Journal of Comparative Neurology, 455, 299–309.PubMedCrossRefGoogle Scholar
  187. Waeschenbach, A., Taylor, P. D., & Littlewood, D. T. J. (2012). A molecular phylogeny of bryozoans. Molecular Phylogenetics and Evolution, 62(2), 718–735.PubMedCrossRefGoogle Scholar
  188. Walsh, E. J., Wallace, R. L., & Shiel, R. J. (2005). Toward a better understanding of the phylogeny of the Asplanchnidae (Rotifera). Hydrobiologia, 546, 71–80.CrossRefGoogle Scholar
  189. Wanninger, A. (2009). Shaping the things to come: ontogeny of lophotrochozoan neuromuscular systems and the tetraneuralia concept. The Biological Bulletin, 216, 293–306.PubMedGoogle Scholar
  190. Wanninger, A., & Haszprunar, G. (2003). The development of the serotonergic and FMRF-amidergic nervous system in Antalis entalis (Mollusca, Scaphopoda). Zoomorphology, 122, 77–85.Google Scholar
  191. Wanninger, A., Fuchs, J., & Haszprunar, G. (2007). Anatomy of the serotonergic nervous system of an entoproct creeping-type larva and its phylogenetic implications. Invertebrate Biology, 126(3), 268–278.CrossRefGoogle Scholar
  192. Watanabe, K., & Yokobori, S. I. (2014). How the early genetic code was established?: inference from the analysis of extant animal mitochondrial decoding systems. In Chemical biology of nucleic acids (pp. 25–40). Springer Berlin Heidelberg.Google Scholar
  193. Weigert, A., Helm, C., Meyer, M., Nickel, B., Arendt, D., Hausdorf, B., Santos, S. R., Halanych, K. M., Purschke, G., Bleidorn, C., & Struck, T. H. (2014). Illuminating the base of the annelid tree using transcriptomics. Molecular Biology and Evolution, 31(6), 1391–1401.PubMedCrossRefGoogle Scholar
  194. Westheide, W., & Russell, C. W. (1992). Ultrastructure of chrysopetalid paleal chaetae (Annelida, Polychaeta). Acta Zoologica, 73, 197–202.CrossRefGoogle Scholar
  195. Wey-Fabrizius, A. R., Herlyn, H., Rieger, B., Rosenkranz, D., Witek, A., Welch, D. B. M., et al. (2014). Transcriptome data reveal syndermatan relationships and suggest the evolution of endoparasitism in Acanthocephala via an epizoic stage. PloS One, 9(2), e88618.PubMedPubMedCentralCrossRefGoogle Scholar
  196. Winchell, C. J., & Jacobs, D. K. (2013). Expression of the Lhx genes apterous and lim1 in an errant polychaete: implications for bilaterian appendage evolution, neural development, and muscle diversification. EvoDevo, 4(1), 4.PubMedPubMedCentralCrossRefGoogle Scholar
  197. Winnepenninckx, B., Backeljau, T., Mackey, L. Y., Brooks, J. M., De Wachter, R., Kumar, S., & Garey, J. R. (1995). 18S rRNA data indicate that Aschelminthes are polyphyletic in origin and consist of at least three distinct clades. Molecular Biology and Evolution, 12, 1132–1137.PubMedGoogle Scholar
  198. Witek, A., Herlyn, H., Ebersberger, I., Mark Welch, D. B., & Hankeln, T. (2009). Support for the monophyletic origin of Gnathifera from phylogenomics. Molecular Phylogenetics and Evolution, 53, 1037–1041.PubMedCrossRefGoogle Scholar
  199. Worsaae, K., & Rouse, G. W. (2008). Is Diurodrilus an annelid? Journal of Morphology, 269, 1426–1455.PubMedCrossRefGoogle Scholar
  200. Wourms, J. P. (1976). Structure, composition, and unicellular origin of nemertean stylets. American Zoologist, 16, 213.Google Scholar
  201. Wray, G. A. (2015). Molecular clocks and the early evolution of metazoan nervous systems. Philosophical Transactions B, 370(1684), 20150046.CrossRefGoogle Scholar
  202. Wurdak, E. S. (1987). Ultrastructure and histochemistry, of the stomach of Asplanchna sieboldi. Hydrobiologia, 147, 361–371.CrossRefGoogle Scholar
  203. Zapata, F., Wilson, N. G., Howison, M., Andrade, S. C., Jörger, K. M., Schrödl, M., Goetz, F., Giribet, G., & Dunn, C. W. (2014). Phylogenomic analyses of deep gastropod relationships reject Orthogastropoda. Proceedings of the Royal Society of London B: Biological Sciences, 281(1794), 20141739.CrossRefGoogle Scholar
  204. Zhong, M., Hansen, B., Nesnidal, M., Golombek, A., Halanych, K. M., & Struck, T. H. (2011). Detecting the symplesiomorphy trap: a multigene phylogenetic analysis of terebelliform annelids. BMC Evolutionary Biology, 11(1), 369.Google Scholar
  205. Zrzavý, J. (2003). Gastrotricha and metazoan phylogeny. Zoologica Scripta, 32, 61–81.CrossRefGoogle Scholar
  206. Zrzavý, J., Mihulka, S., Kepka, P., Bezděk, A., & Tietz, D. (1998). Phylogeny of the Metazoa based on morphological and 18S ribosomal DNA evidence. Cladistics, 14(3), 249–285.CrossRefGoogle Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2016

Authors and Affiliations

  1. 1.Department of Biological SciencesThe University of AlabamaTuscaloosaUSA

Personalised recommendations