Skip to main content
Log in

Phylogeography of three closely related myrmecophytic pioneer tree species in SE Asia: implications for species delimitation

  • Original Article
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

Members of the Euphorbiaceae are ecologically important elements of Southeast Asian forests. Species of the pioneer tree genus Macaranga, which is also known for its association with ants, are often abundant in disturbed areas. Phylogenetic studies suggested a recent radiation of section Pachystemon which comprises the majority of obligate myrmecophytes within Macaranga. In the present study, we analyzed the genetic structure of three closely related species of this section (M. constricta, M. griffithiana, and M. motleyana) with the aim of resolving their controversial taxonomy and historical biogeography. Chloroplast DNA haplotypes proved to be species-specific and showed a strong phylogeographic pattern. Nuclear microsatellite data supported the taxonomic distinctness of M. griffithiana and M. motleyana, but gave ambiguous results for M. constricta. Genetic differentiation was stronger each within M. griffithiana and M. motleyana than between M. constricta and M. griffithiana, highlighting problems of defining species boundaries. We found no indication for introgression or hybridization events. The high intraspecific morphological variation of the Bornean endemic M. motleyana was partly reflected by similar patterns of genetic variation. The pronounced genetic structure indicates a comparatively long diversification for this species. In contrast, the weak genetic differentiation within M. griffithiana, as well as the widespread distribution of its most common chloroplast haplotype from peninsular Malaysia up to Indochina, indicates a recent expansion in this area. Despite their morphological similarity and close relatedness, all species possess their own specific ant-partners with a corresponding distribution pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baier, C., Guicking, D., Prinz, K., Fey-Wagner, C., Wöhrmann, T., Weising, K., Debener, T., et al. (2009). Isolation and characterization of 11 new microsatellite markers for Macaranga (Euphorbiaceae). Molecular Ecology Resources, 9, 1049–1052.

    Article  CAS  PubMed  Google Scholar 

  • Bänfer, G., Fiala, B., & Weising, K. (2004). AFLP analysis of phylogenetic relationships among myrmecophytic species of Macaranga (Euphorbiaceae) and their allies. Plant Systematics and Evolution, 249, 213–231.

    Article  Google Scholar 

  • Bänfer, G., Moog, U., Fiala, B., Mohamed, M., Weising, K., & Blattner, F. R. (2006). A chloroplast genealogy of myrmecophytic Macaranga species (Euphorbiaceae) in Southeast Asia reveals hybridization, vicariance and long-distance dispersals. Molecular Ecology, 15, 4409–4424.

    Article  PubMed  Google Scholar 

  • Bendiksby, M., Schumacher, T., Gussarova, G., Nais, J., Mat-Salleh, K., Sofiyanti, N., Madulid, D., et al. (2010). Elucidating the evolutionary history of the Southeast Asian holoparasitic, giant-flowered Rafflesiaceae: Pliocene vicariance, morphological convergence and character displacement. Molecular Phylogenetics and Evolution, 57, 620–633.

    Article  CAS  PubMed  Google Scholar 

  • Blaimer, B. B. (2012). Acrobat ants go global: origin, evolution and systematics of the genus Crematogaster (Hymenoptera: Formicidae). Molecular Phylogenetics and Evolution, 65, 421–436.

    Article  PubMed  Google Scholar 

  • Blattner, F. R., Weising, K., Bänfer, G., Maschwitz, U., & Fiala, B. (2001). Molecular analysis of phylogenetic relationships among myrmecophytic Macaranga species (Euphorbiaceae). Molecular Phylogenetics and Evolution, 19, 331–344.

    Article  CAS  PubMed  Google Scholar 

  • Cannon, C. H., Morley, R. J., & Bush, A. B. G. (2009). The current refugial rainforests of Sundaland are unrepresentative of their biogeographic past and highly vulnerable to disturbance. Proceedings of the National Academy of Sciences of the United States of Ameica, 106, 11188–11193.

    Article  CAS  Google Scholar 

  • Chomicki, G., & Renner, S. S. (2015). Phylogenetics and molecular clocks reveal the repeated evolution of ant-plants after the late Miocene in Africa and the early Miocene in Australasia and the Neotropics. New Phytologist, 20, 411–424.

  • Clement, M., Posada, D., & Crandall, K. A. (2000). TCS: a computer program to estimate gene genealogies. Molecular Ecology, 9, 1657–1659.

    Article  CAS  PubMed  Google Scholar 

  • Davies, S. J. (2001). Systematics of Macaranga sections Pachystemon and Pruinosae (Euphorbiaceae). Harvard Papers in Botany, 6, 371–448.

    Google Scholar 

  • Davies, S. J., Lum, S. K. Y., Chan, R., & Wang, L. K. (2001). Evolution of myrmecophytism in western Malesian Macaranga (Euphorbiaceae). Evolution, 55, 1542–1559.

    Article  CAS  PubMed  Google Scholar 

  • Drummond, A. J., Suchard, M. A., Xie, D., & Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29, 1969–1973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duminil, J., Kenfack, D., Viscosi, V., Grumiau, L., & Hardy, O. J. (2012). Testing species delimitation in sympatric species complexes: the case of an African tropical tree, Carapa spp. (Meliaceae). Molecular Phylogenetics and Evolution, 62, 275–285.

    Article  PubMed  Google Scholar 

  • Earl, D. A., & von Holdt, B. M. (2012). STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4, 359–361.

    Article  Google Scholar 

  • El Mousadik, A., & Petit, R. J. (1996). High level of genetic differentiation for allelic richness among populations of the argan tree (Argania spinosa (L) Skeels) endemic to Morocco. Theoretical and Applied Genetics, 9, 832–839.

    Article  Google Scholar 

  • Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software structure: a simulation study. Molecular Ecology, 14, 2611–2620.

    Article  CAS  PubMed  Google Scholar 

  • Excoffier, L., Smouse, P. E., & Quattro, J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics, 131, 479–491.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Excoffier, L., Laval, G., & Schneider, S. (2005). Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1, 47–50.

    CAS  PubMed Central  Google Scholar 

  • Falush, D., Stephens, M., & Pritchard, J. K. (2003). Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics, 16, 1567–1587.

    Google Scholar 

  • Feldhaar, H., Fiala, B., Gadau, J., Mohamed, M., & Maschwitz, U. (2003a). Molecular phylogeny of Crematogaster subgenus Decacrema ants (Hymenoptera: Formicidae) and the colonization of Macaranga (Euphorbiaceae) trees. Molecular Phylogenetics and Evolution, 27, 441–452.

    Article  CAS  PubMed  Google Scholar 

  • Feldhaar, H., Fiala, B., Hashim, R., & Maschwitz, U. (2003b). Patterns of the Crematogaster-Macaranga association: the ant partner makes the difference. Insectes Sociaux, 50, 9–19.

    Article  Google Scholar 

  • Feldhaar, H., Gadau, J., & Fiala, B. (2010). Speciation in obligately plant-associated Crematogaster ants: host distribution rather than adaption towards specific hosts drives the process. In M. Glaubrecht (Ed.), Evolution in action—adaptive radiations and the origins of biodiversity (pp. 193–213). Heidelberg: Springer.

    Google Scholar 

  • Fiala, B., Maschwitz, U., Tho, Y. P., & Helbig, A. J. (1989). Studies of a Southeast Asian ant-plant association: protection of Macaranga trees by Crematogaster borneensis. Oecologia, 79, 463–470.

    Article  Google Scholar 

  • Fiala, B., Grunsky, H., Maschwitz, U., & Linsenmair, K. E. (1994). Diversity of ant-plant interactions: protective efficacy in Macaranga species with different degrees of ant association. Oecologia, 97, 186–192.

    Article  Google Scholar 

  • Fiala, B., Jakob, A., Maschwitz, U., & Linsenmair, K. E. (1999). Diversity, evolutionary specialization and geographic distribution of a mutualistic ant-plant complex: Macaranga and Crematogaster in South East Asia. Biological Journal of the Linnean Society, 66, 305–331.

    Google Scholar 

  • Fiala, B., Meyer, U., Hashim, R., & Maschwitz, U. (2011). Pollination systems in pioneer trees of the genus Macaranga (Euphorbiaceae) in Malaysian rainforests. Biological Journal of the Linnean Society, 103, 935–953.

    Article  Google Scholar 

  • Goudet, J. (2002). FSTAT, a program to estimate and test gene diversities and fixation indices version 2.9.3.2. http://www2.unil.ch/popgen/softwares/fstat.htm.

  • Guicking, D., Rana, T. S., Blattner, F. R., & Weising, K. (2006). Microsatellite markers for the palaeotropic pioneer tree genus Macaranga (Euphorbiaceae) and their cross-species transferability. Molecular Ecology Notes, 6, 245–248.

    Article  CAS  Google Scholar 

  • Guicking, D., Kröger-Kilian, T., Weising, K., & Blattner, F. R. (2008). Single nucleotide sequence analysis: a cost- and time-effective protocol for the analysis of microsatellite- and indel-rich chloroplast DNA regions. Molecular Ecology Resources, 8, 62–65.

    Article  CAS  PubMed  Google Scholar 

  • Guicking, D., Fiala, B., Blattner, F. R., Slik, F., Mohamed, M., & Weising, K. (2011). Comparative chloroplast DNA phylogeography of two tropical pioneer trees, Macaranga gigantea and Macaranga pearsonii (Euphorbiaceae). Tree Genetics & Genomes, 7, 573–583.

    Article  Google Scholar 

  • Guicking, D., Fiala, B., Kröger-Kilian, T., Mohamed, M., & Weising, K. (2013). High gene flow in two thrips-pollinated Southeast Asian pioneer trees: genetic diversity and population structure of Macaranga hypoleuca and Macaranga beccariana (Euphorbiaceae). Botanical Journal of the Linnean Society, 173, 606–621.

    Article  Google Scholar 

  • Heckroth, H. P., Fiala, B., Gullan, P. J., Idris, A. H., & Maschwitz, U. (1998). The soft scale (Coccidae) associates of Malaysian ant-plants. Journal of Tropical Ecology, 14, 427–443.

    Article  Google Scholar 

  • Iwanaga, H., Teshima, K. M., Khatab, I. A., Inomata, N., Finkeldey, R., Siregar, I. Z., Siregar, U. J., & Szmidt, A. E. (2012). Population structure and demographic history of a tropical lowland rainforest tree species Shorea parvifolia (Dipterocarpaceae) from Southeastern Asia. Ecology and Evolution, 2, 1663–1675.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamiya, K., Nanami, S., Kenzo, T., Yoneda, R., Diway, B., Chong, L., Azani, M. A., et al. (2012). Demographic history of Shorea curtisii (Dipterocarpaceae) inferred from chloroplast DNA sequence variations. Biotropica, 44, 577–585.

    Article  Google Scholar 

  • Kimura, M., & Ohta, T. (1978). Stepwise mutation model and distribution of allelic frequencies in a finite population. Proceedings of the National Academy of Sciences of the United States of Ameica, 75, 2868–2872.

    Article  CAS  Google Scholar 

  • Kulju, K. K. M., Sierra, S. E. C., Draisma, S. G. A., Samuel, R., & van Welzen, P. C. (2007). Molecular phylogeny of Macaranga, Mallotus, and related genera (Euphorbiaceae s.s.): insights from plastid and nuclear DNA sequence data. American Journal of Botany, 94, 1726–1743.

    Article  CAS  PubMed  Google Scholar 

  • Leonard, J. A., den Tex, R.-J., Hawkins, M. T. R., Muñoz-Fuentes, V., Thorington, R., & Maldonado, J. E. (2015). Phylogeography of vertebrates on the Sunda Shelf: a multi-species comparison. Journal of Biogeography, 42, 871–879.

    Article  Google Scholar 

  • Maschwitz, U., Fiala, B., & Dumpert, K. (2004). An unusual myrmecophytic Macaranga association, occurring in a disjunct area in the monsoon zone of South-East Asia: phenology and the description of a new ant species. Ecotropica, 10, 33–49.

    Google Scholar 

  • Morley, R. J. (2000). Origin and evolution of tropical rain forests. Chichester: Wiley.

    Google Scholar 

  • Nei, M. (1987). Molecular evolutionary genetics. New York: Columbia University Press.

    Google Scholar 

  • Ohtani, M., Kondo, T., Tani, N., Ueno, S., Lee, L. S., Ng, K., et al. (2013). Nuclear and chloroplast DNA phylogeography reveals Pleistocene divergence and subsequent secondary contact of two genetic lineages of the tropical rainforest tree species Shorea leprosula (Dipterocarpaceae) in South-East Asia. Molecular Ecology, 22, 2264–2279.

    Article  CAS  PubMed  Google Scholar 

  • Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155, 945–959.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quek, S. P., Davies, S. J., Itino, T., & Pierce, N. E. (2004). Codiversification in an ant-plant mutualism: stem texture and the evolution of host use in Crematogaster (Formicidae: Myrmicinae) inhabitants of Macaranga (Euphorbiaceae). Evolution, 58, 554–570.

    Article  CAS  PubMed  Google Scholar 

  • Quek, S. P., Davies, S. J., Ashton, P. S., Itino, T., & Pierce, N. E. (2007). The geography of diversification in mutualistic ants: a gene’s-eye view into the Neogene history of Sundaland rain forests. Molecular Ecology, 16, 2045–2062.

    Article  CAS  PubMed  Google Scholar 

  • Raes, N., Cannon, C. H., Hijmans, R. J., Piessens, T., Saw, L. G., van Welzen, P. C., & Slik, J. W. F. (2014). Historical distribution of Sundaland’s Dipterocarp rainforests at Quaternary glacial maxima. Proceedings of the National Academy of Sciences of the United States of Ameica, 111, 16790–16795.

    Article  CAS  Google Scholar 

  • Raymond, M., & Rousset, F. (1995). Genepop (version 1.2): population genetics software for exact tests and ecumenicism. Journal of Heredity, 86, 248–249.

    Google Scholar 

  • Rosell, J. A., Olson, M. E., Weeks, A., De-Nova, J. A., Lemos, R. M., Camacho, J. P., Feria, T. P., et al. (2010). Diversification in species complexes: tests of species origin and delimitation in the Bursera simaruba clade of tropical trees (Burseraceae). Molecular Phylogenetics and Evolution, 57, 798–811.

    Article  PubMed  Google Scholar 

  • Slik, J. W. F., Poulsen, A. D., Ashton, P. S., Cannon, C. H., Eichhorn, K. A. O., Kartawinata, K., Lanniari, L., et al. (2003a). A floristic analysis of the lowland dipterocarp forests of Borneo. Journal of Biogeography, 30, 1517–1531.

    Article  Google Scholar 

  • Slik, J. W. F., Keßler, P. J. A., & van Welzen, P. C. (2003b). Macaranga and Mallotus species (Euphorbiaceae) as indicators for disturbance in the mixed lowland dipterocarp forest of East Kalimantan (Indonesia). Ecological Indicators, 2, 311–324.

    Article  Google Scholar 

  • Slik, J. W. F., Aiba, S.-I., Bastian, M., Brearley, F. Q., Cannon, C. H., Eichhorn, K. A. O., Fredriksson, G., et al. (2011). Soils on exposed Sunda Shelf shaped biogeographic patterns in the equatorial forests of Southeast Asia. Proceedings of the National Academy of Sciences of the United States of Ameica, 108, 12343–12347.

    Article  CAS  Google Scholar 

  • Ueda, S., Quek, S. P., Itioka, T., Inamori, K., Sato, Y., Murase, K., & Itino, T. (2008). An ancient tripartite symbiosis of plants, ants and scale insects. Proceedings of the Royal Society of London B, 275, 2319–2326.

    Article  CAS  Google Scholar 

  • van Welzen, P. C., Strijk, J. S., van Konijnenburg-van Cittert, J. H. A., Nucete, M., & Merckx, V. S. F. T. (2014). Dated phylogenies of the sister genera Macaranga and Mallotus (Euphorbiaceae): congruence in historical biogeographic patterns? PloS One, 9(1), e85713. doi:10.1371/journal.pone.0085713.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vogel, M., Bänfer, G., Moog, U., & Weising, K. (2003). Development and characterization of chloroplast microsatellite markers in Macaranga (Euphorbiaceae). Genome, 46, 845–857.

    Article  CAS  PubMed  Google Scholar 

  • Voris, H. K. (2000). Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations. Journal of Biogeography, 27, 1153–1167.

    Article  Google Scholar 

  • Weising, K., & Gardner, R. C. (1999). A set of conserved PCR primers for the analysis of simple sequence repeat polymorphisms in chloroplast genomes of dicotyledonous angiosperms. Genome, 42, 9–19.

    Article  CAS  PubMed  Google Scholar 

  • Weising, K., Guicking, D., Fey-Wagner, C., Kröger-Kilian, T., Wöhrmann, T., Dorstewitz, W., Bänfer, G., et al. (2010). Mechanisms of speciation in Southeast Asian ant-plants of the genus Macaranga (Euphorbiaceae). In M. Glaubrecht (Ed.), Evolution in action—adaptive radiations and the origins of biodiversity (pp. 169–191). Berlin: Springer.

    Google Scholar 

  • Whitmore, T. C. (1974). Studies in Macaranga VI. Novelties form Borneo and a reduction in Malaya. Kew Bulletin, 29, 445–450.

    Article  Google Scholar 

  • Whitmore, T. C. (1982). Macaranga Thou. Kew Bulletin, 36, 312–323.

    Google Scholar 

  • Whitmore, T. C. (1984). Tropical rain forests of the Far East (2nd ed.). Oxford: Oxford University Press.

    Google Scholar 

  • Whitmore, T. C. (2008). The genus Macaranga: a prodromus. Kew: Royal Botanic Gardens.

    Google Scholar 

  • Whitmore, T. C., & Airy Shaw, H. K. (1971). Studies in Macaranga VI. New and notable records for Malaya. Kew Bulletin, 25, 238.

    Article  Google Scholar 

Download references

Acknowledgments

Permission to conduct research in Malaysia was kindly granted by the Economic Planning Unit (EPU), Kuala Lumpur and EPU in Kota Kinabalu, Sabah, as well as by the Danum Valley Management Committee and the Forest Department, Sarawak. We thank our colleagues in Malaysia, especially Dr. Rosli bin Hashim, Dr. Jamili Nais, Dr. Maklarin bin Lakim, and Dr. G. Reynolds for their support. We also thank LIPI for providing research permits for East Kalimantan, and our counterpart Kade Sidiyasa, who sadly passed away recently, and the Tropenbos Foundation for logistic help on site. Financial support by the German Research Foundation is gratefully acknowledged (grant We 1830/4, Fi 606/5). We thank Prof. Dr. K. E. Linsenmair for manifold support, Dr. K. Khoshbakht for the help with the molecular analyses, and Dr. N. Ruppert, M. Zirpel, Dr. T. Kenzo, Forestry and Forest Products Research Institute, and the Forest-Wildlife Research and Development Institute, Cambodia, for the supply of plant material. Dr. S. P. Quek kindly provided a photograph. We thank two anonymous referees for their constructive and valuable comments on a previous version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brigitte Fiala.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Brigitte Fiala and Daniela Guicking contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 15kb)

ESM 2

(PDF 849 kb)

ESM 3

(PDF 7 kb)

ESM 4

(PDF 73 kb)

ESM 5

(PDF 92 kb)

ESM 6

(PDF 537 kb)

ESM 7

(PDF 707 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fiala, B., Slik, F., Weising, K. et al. Phylogeography of three closely related myrmecophytic pioneer tree species in SE Asia: implications for species delimitation. Org Divers Evol 16, 39–52 (2016). https://doi.org/10.1007/s13127-015-0254-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-015-0254-2

Keywords

Navigation