Skip to main content

Advertisement

Log in

Range of a Palearctic uraniid moth Eversmannia exornata (Lepidoptera: Uraniidae: Epipleminae) was split in the Holocene, as evaluated using histone H1 and COI genes with reference to the Beringian disjunction in the genus Oreta (Lepidoptera: Drepanidae)

  • Original Article
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

Large-scale climatic cycling during the Pleistocene resulted in repeated split and fusion of species ranges in high northern latitudes. Disjunctions of ranges of some Eurasian species associated with nemoral communities used to be dated to ‘glacial time’, with existence of their contiguous ranges reconstructed not later than 1 mya, while a recent hypothesis associates them with the Boreal time of the Holocene and reconstructs the contiguous ranges ca 5 thousand years ago. These estimates differing by almost 3 orders of magnitude appealed for their testing via molecular methods. We made such a test for Eversmannia exornata (Lepidoptera: Uraniidae: Epipleminae), the only uraniid moth inhabiting Siberia, the range of which is split into three pieces: East European, West Siberian and Far Eastern. Two genes were sequenced in specimens from one population from each geographical isolate: a fragment of the mitochondrial cytochrome c oxydase I (COI), frequently used for molecular phylogeny and barcoding, and a nuclear gene encoding histone H1. The COI gene fragment appeared to have two alleles differing by one synonymous substitution; both alleles co-occurring in the European population. The histone H1 gene had two dimorphic synonymous sites, with both variants of one site found in all three isolates. Absence of accumulated difference in both genes and polymorphism for the same synonymous substitution in the H1 gene in all three parts of the range suggests a very recent disjunction which cannot be resolved by coding gene sequences. This well corresponds to the Holocene disjunction hypothesis and rules out the Pliocene/early Pleistocene disjunction hypothesis. The published rate of the COI gene evolution was verified using the Beringian disjunction in the genus Oreta (Lepidoptera: Drepaniidae) as comparing two northernmost Asian and one American species which diverged not later than the Pliocene. The rate of substitution accumulation in the histone H1 gene was estimated as 0.48 of that of the COI gene, that is ca 3.6 × 10−9 substitutions per site per year. Four indels were found in the histone H1 gene in the three Oreta species studied, differing from each other not less than with two indels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allan, J., Mitchell, N., Harborne, C., Bohm, C., & Crane-Robinson, C. (1986). Roles of H1 domains in determining higher order chromatin structure and H1 location. Journal of Molecular Biology, 187(4), 591–601.

    Article  CAS  PubMed  Google Scholar 

  • Arkhipov, S. A., & Volkova, V. S. (1994). Geological history, Pleistocene landscapes and climate in West Siberia. Novosibirsk: Nauka (in Russian).

    Google Scholar 

  • Babik, W., Branicki, W., Sandera, M., Litvinchuk, S., Borkin, J. J., Irwin, J. T., & Rafinki, J. (2004). Mitochondrial phylogeography of the moor frog, Rana arvalis. Molecular Ecology, 13(6), 1469–1480.

    Article  CAS  PubMed  Google Scholar 

  • Barton, N. H., Briggs, D. E. G., Eisen, J. A., Goldstein, D. B., & Patel, N. H. (2007). Evolution. Cold Spring Harbor: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Belova, V. A. (1985). Vegetation and climate of the Late Cenozoic of the southern Eastern Siberia. Novosibirsk: Nauka (In Russian).

    Google Scholar 

  • Belyshev, B. F., & Haritonov, A. Y. (1981). Geography of Odonata of Boreal Faunistic Kingdom. Novosibisrk: Nauka (In Russian).

    Google Scholar 

  • Berdnikov, V. A., Rozov, S. M., Temnykh, S. V., Gorel’, F. L., & Kosterin, O. E. (1993). Adaptive nature of interspecies variation of Histone H1 in insects. Journal of Molecular Evolution, 36(5), 497–507.

    Article  CAS  Google Scholar 

  • Berdnikov, V. A., Bogdanova, V. S., Gorel, F. L., Kosterin, O. E., & Trusov, Y. A. (2003). Large changes in the structure of the major histone H1 subtype result in small effects on quantitative traits in legumes. Genetica, 119(2), 167–182.

    Article  CAS  PubMed  Google Scholar 

  • Bernard, R., & Kosterin, O. E. (2010). Biogeographical and ecological description of the Odonata of eastern Vasyugan Plain, West Siberia, Russia. Odonatologica, 39(1), 1–28.

    Google Scholar 

  • Bernard, R., Heiser, M., Hochkirch, A., & Schmidt, T. (2011). Genetic homogenity of hedgling Nechalennia speciosa (Odonata: Coenagrionidae) indicates a single Würm glacial refugium and trans-Palearctic postglacial expansion. Journal of Zoological Systematics and Evolutionary Research, 49(4), 292–297.

    Article  Google Scholar 

  • Bharath, M. M. S., Chandra, N. R., & Rao, M. R. S. (2003). Molecular modeling of chromatosomal particle. Nucleic Acids Research, 31(14), 4264–4274.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bogdanova, V. S., Galieva, E. R., & Kosterin, O. E. (2009). Genetic analysis of nuclear-cytoplasmic incompatibility in pea associated with cytoplasm of an accession of wild subspecies Pisum sativum subsp. elatius (Bieb.) Schmahl. Theoretical and Applied Genetics, 118(4), 801–809.

    Article  CAS  PubMed  Google Scholar 

  • Brower, A.V.Z. (1994) Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial-DNA evolution. Proceedings of the National Academy of Sciences USA, 91 (14), 6491–6495.

  • Covell, C. V. (1984). A field guide to the moths of Eastern North America. The Peterson field guide series. Boston: Houghton Mifflin Company.

    Google Scholar 

  • Coyne, J. A., & Orr, H. A. (2004). Speciation. Sunderland: Sinauer Associates.

    Google Scholar 

  • Crozier, R. H., & Crozier, Y. C. (1993). The mitochondrial genome of the honeybee Apis mellifera: complete sequence and genome organization. Genetics, 133(1), 97–117.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Doenecke, D., Albig, W., Bode, C., Drabent, B., Franke, K., Gavenis, K., & Witt, O. (1997). Histones: genetic diversity and tissue-specific gene expression. Histochemistry and Cell Biology, 107(1), 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Drummond, A. J., Suchard, M. A., Xie, D., & Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29(8), 1969–1973.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dubatolov, V. V. (2007). Arctiinae (Lepidoptera, Arctiidae) of the Palearctic. D. Sci. thesis. Novosibirsk: Institute of Systematics and Ecology of Animals, 50 pp.

  • Dubatolov, V. V. (2009). Macroheterocera excluding Geometridae and Noctuidae s. lat. (Insecta, Lepidoptera) of Lower Amur//Amurian. Zoological Journal, 1(3), 221–252.

    Google Scholar 

  • Dubatolov, V. V., Antonova, E. M., & Kosterin, O. E. (1993). Eversmannia exornata (Eversmann, 1837), the only known representative of the Epiplemidae family (Lepidoptera) in West Palearctic. Actias, 1, 19–23.

    Google Scholar 

  • Dubatolov, V. V., & Dolgikh, A. M. (2010). New records of macromoths (Insecta, Lepidoptera, Macroheterocera) in the Bolshekhekhtsyrskii Nature Reserve (Khabarovsk suburbs). Amurian Zoological Journal, 2(2), 136–144. color pl. II.

  • Dubatolov, V. V., & Kosterin, O. E. (2000). Nemoral species of Lepidoptera (Insecta) in Siberia: novel view on their history and timing of their disjunctions. Entomological Fennica, 11(3), 141–166.

    Google Scholar 

  • Dubatolov, V. V., Vasilenko, S. V., & Streltzov, A. N. (2003). New nemoral insect species of Diptera, Coleoptera, Neuroptera, Mecoptera, Lepidoptera from River Agrun basin (Chita Oblast’) and their possible zoogeographic significance. Euroasian Entomological Journal, 2(3), 167–180. in Russian, with Engl.s.

  • Eirín-López, J. M., Gonzáles-Tizón, A. M., Martínes, A., & Méndez, J. (2004). Birth-and-death evolution with strong purifying selection in histone H1 multigene family and the origin of orphon H1 genes. Molecular Biology and Evolution, 21(10), 1992–2003.

  • Eirín-López, J. M., González-Romero, R., Dryhurst, D., Méndez, J., & Ausio, J. (2009). Long-term evolution of histone families: old notions and new insights into their mechanisms of diversification across eukaryotes. In P. Pontarotti (Ed.), Evolutionary biology: concept, modeling, and application (pp. 139–162). Heidelberg: Springer.

    Chapter  Google Scholar 

  • EPICA Community Members. (2004). Eight glacial cycles from an Antarctic ice core. Nature, 429(6992), 623–628.

    Article  Google Scholar 

  • Farrel, B. D. (2001). Evolutionary assembly of the milkweed fauna: cytochrome oxidase I and the age of Tetraopes beetles. Molecular Phylogenetics and Evolution, 18(3), 467–478.

    Article  Google Scholar 

  • Fedorov, V. B., Goropashnaya, A. V., Boeskorov, G. G., & Cook, J. A. (2008). Comparative phylogeography and demographic history of the wood lemming (Myopus schisticolor): implications for late Quaternary history of the taiga species in Eurasia. Molecular Ecology, 17(2), 598–610.

    Article  CAS  PubMed  Google Scholar 

  • Folmer, O., Black, M., Hoeh, W., Lutz, R., & Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3(5), 294–299.

    CAS  PubMed  Google Scholar 

  • Fradkina, A. F. (1995). Palynostratigraphy of Paleogene and Neogene sediments in North-Eastern Russia. Novosibirsk: United Institute of Geology, Geophysics and Mineralogy Press (In Russian).

    Google Scholar 

  • Goropashnaya, A. V., Fedorov, V. B., Seifert, B., & Pamilo, P. (2004). Limited phylogeographical structure across Eurasia in two red wood ant species Formica pratensis and F. lugubris (Hymenoptera, Formicidae). Molecular Ecology, 13(7), 1849–1858.

    Article  CAS  PubMed  Google Scholar 

  • Hansen, J. C., Lu, X., Ross, E. D. & Woody, R. W. (2006) Intrinsic protein disorder, amino acid composition, and histone terminal domains. Journal of Biological Chemistry, 281(4), 1853–1856.

  • Happel, N., & Doenecke, D. (2009). Histone H1 and its isoforms: contribution to chromatin structure and function. Gene, 431(1), 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Hillis, D. M., & Dixon, M. T. (1991). Ribosomal DNA: molecular evolution and phylogenetic inference. Quarterly Review of Biology, 1991, 411–453.

    Article  Google Scholar 

  • Hovmöller, R., & Johansson, F. (2004). A phylogenetic perspective on larval spine morphology in Leucorrhinia (Odonata: Libellulidae) based on ITS1, 5.8 s and ITS2 rDNA sequences. Molecular Phylogenetics and Evolution, 30(3), 653–662.

  • Hundertmark, K. J., Shields, G. F., Udina, I. G., Bowyer, R. T., Danilkin, A. A., & Schwartz, C. C. (2002). Mitochondrial phylogeography of moose (Alces alces): late Pleistocene divergence and population expansion. Molecular Phylogenetics and Evolution, 22(3), 375–387.

    Article  CAS  PubMed  Google Scholar 

  • Imbrie, J., Berger, A., Boyle, E., Clemens, S., Duffy, A., Howard, W., Kukla, G., Kutzbach, J., Martinson, D., & McIntyre, A. (1993). On the structure and origin of major glaciation cycles. 2. The 100,000-year cycle. Paleoceanography, 8(6), 699–735.

    Article  Google Scholar 

  • Jödicke, R., Langhoff, P., & Misof, B. (2004). The species group taxa in the Holarctic genus Cordulia: a study in nomenclature and genetic differentiation (Odonata: Corduliidae). International Journal of Odonatology, 7(1), 37–52.

    Article  Google Scholar 

  • Jukes, T. H., & Cantor, C. R. (1969). Evolution of protein molecules. In H. N. Munro (Ed.), Mammalian protein metabolism (pp. 21–132). New York: Academic.

    Chapter  Google Scholar 

  • Kaeberlein, M., McVey, M., & Guarente, L. (1999). The SIR2/3/4 complex and SIR2 alone promote longevity in S. cerevisiae by two different mechanisms. Genes & Development, 13(19), 2570–2580.

    Article  CAS  Google Scholar 

  • Knyazev, S. A., Ponomaryov, K. B., Abramov, V. A., & Sitnikov, P. S. (2010). The new findings of Eversmannia exornata (Eversmann, 1837) (Lepidoptera: Epiplemidae) in West Siberia. Eversmannia, 21–22, 98 (In Russian).

    Google Scholar 

  • Konieczny, A., & Ausubel, F. M. (1993). A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. The Plant Journal, 4(2), 403–410.

    Article  CAS  PubMed  Google Scholar 

  • Kosterin, O. E. (2002). Western range limits and isolates of eastern odonate species in Siberia and their putative origins. Odonatologica, 34(3), 219–242.

    Google Scholar 

  • Kosterin, O. E., & Dubatolov, V. V. (2007). Local population of a rare species Eversmannia exornata Eversmann, 1837 (Epiplemidae, Lepidoptera) in Academy Town. In I. F. Zhimulev (Ed.), Nature of Academy Town: 50 years after (pp. 140–144). Novosibirsk: Izdatelstvo SO RAN (in Russian).

    Google Scholar 

  • Kozhevnikov, Y. P., & Ukraintseva, V. V. (1992). Some features of vegetation cover of Eurasia in the earliest Holocene. Ukrainskiy Botanicheskiy Zhurnal, 77(8), 1–9 (In Russian).

    Google Scholar 

  • Liao, D. (1999). Concerted evolution: molecular mechanism and biological implications. The American Journal of Human Genetics, 64(1), 24–30.

    Article  CAS  Google Scholar 

  • Logunov, D. V. (1996). Preliminary report on the Euro-Siberian faunal commections of jumping spiders (Aranea, Salticidae). Acta Zoological Fennica, 201, 71–76.

    Google Scholar 

  • Marincovich, L., & Gladenkov, A. Y. (1999). Evidence for an early opening of the Bering Strait. Nature, 397(6715), 149–151.

    Article  CAS  Google Scholar 

  • Marincovich, L., & Gladenkov, A. Y. (2001). New evidence for the age of the Bering Strait. Quaternary Science Reviews, 20(1), 329–335.

    Article  Google Scholar 

  • Matyushkin, E. N. (1976). European–East Asian break between the ranges of terrestrial vertebrates. Zoologicheskiy Zhurnal, 55(9), 1277–1291 (in Russian).

    Google Scholar 

  • Mikkola, K. (1987) Pattern of noctuid species common between the extremeties of the Palaeacrtic zone: a result of glacial and postglacial movements. Tinea, 12 (supplement), 310–315.

  • Mikkola, K., Lafontaine, J. D., & Kononenko, V. S. (1991). Zoogeography of the Holarctic species in the Noctuidae (Lepidoptera): importance of the Beringian refuge. Entomologica Fennica, 1991, 153–173.

    Google Scholar 

  • Mullen, S. P. (2006). Wing pattern evolution and the origins of mimicry among North American admiral butterflies (Nymphalidae: Limenitis). Molecular Phylogenetics and Evolution, 39(3), 747–758.

    Article  CAS  PubMed  Google Scholar 

  • Mullen, S. P., Savage, W. K., Wahlberg, N., & Willmott, K. R. (2011). Rapid diversification ant not clade age explains high diversity in Neotropical Adelpha butterflies. Proc R Soc B Biol Sci, 278, 1777–1785.

    Article  Google Scholar 

  • Nazarenko, A.A. (1992) Faunistical cycles: extinction–expansion–extinction… A modern history of the Dendrphilous Ornithofauna of Eastern palaearctic. D. Sci. Thesis. Vladivostok: Institute of Biology and Pedology. (in Russian).

  • Nei, M., & Kumar, S. (2000). Molecular evolution and phylogenetics. New York: Oxford University Press.

    Google Scholar 

  • Nei, M., & Gojobori, T. (1986). Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Molecular Biology and Evolution, 3(5), 418–426.

    CAS  PubMed  Google Scholar 

  • Nei, M., & Rooney, A. P. (2005). Concerted and birth-and-death evolution of multigene families. Annual Review of Genetics, 39, 121–152.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oshida, T., Abramov, A., Yanagawa, H., & Masuda, R. (2005). Phylogeography of the Russian flying squirrel (Pteromys volans): implication of refugia theory in arboreal small mammal of Eurasia. Molecular Ecology, 14(4), 1191–1196.

    Article  CAS  PubMed  Google Scholar 

  • Polozhiy, A. V., & Krapivkina, E. D. (1985). Relics of the tertiary broad-leafed forests in the flora of Siberia. Tomsk: Tomsk University Press, Tomsk (in Russian).

    Google Scholar 

  • Ponte, I., Vila, R., & Suau, P. (2003). Sequence complexity of histone H1 subtypes. Molecular Biology and Evolution, 20(3), 371–380.

    Article  CAS  PubMed  Google Scholar 

  • Peng, J. C., & Karpen, G. H. (2007). H3K9 methylation and RNA interference regulate nucleolar organization and repeated DNA stability. Nature Cell Biology, 9(1), 25–35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Petit, J.-R., Jouzel, J., Raynaud, D., Barkov, N., Barnola, J.-M., Basile, I., Bender, M., Chappellaz, J., Davis, M., & Delaygue, G. (1999). Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399(6735), 429–436.

  • Quek, S. P., Davies, S. J., Itino, T., & Pierce, N. E. (2004). Codiversification in an ant-plant mutualism: stem texture and the evolution of host use in Crematogaster (Formicidae: myamicinae) inhabitants of Macaranga (Euphorbiaceae). Evolution, 58(3), 554–570.

    Article  CAS  PubMed  Google Scholar 

  • Rozen, S., & Skaletsky, H. J. (2000). Primers on the WWW for general users and for biologist programmers. In S. Krawetz & S. Misener (Eds.), Bioinformatics methods and protocols: methods in molecular biology. Totowa: Humana Press.

    Google Scholar 

  • Saitoh, T., Alström, P., Nishiumi, I., Shigeta, Y., Williams, D., Olsson, U., & Ueda, K. (2010). Old divergences in a boreal bird supports long-term survival through the Ice Ages. BMC Evolutionary Biology, 10(1), 35.

    Article  PubMed Central  PubMed  Google Scholar 

  • Sinev, S. Y. (2008). Uraniidae. In S. Y. Sinev (Ed.), Catalogue of the Lepidoptera of Russia (Vol. 336, pp. 189–190). Moscow: KMK Press. in Russian.

    Google Scholar 

  • Schmitt, T., & Seitz, A. (2001). Intraspecific allozymatic differentiation reveals the glacial refugia and the postglacial expansions of European Erebia medusa (Lepidoptera: Nymphalidae). Biological Journal of the Linnean Society, 74(4), 429–458.

    Google Scholar 

  • Schmitt, T., & Varga, Z. (2012). Extra-Mediterranean refugia: the rule and not the exception? Frontiers in Zoology, 9(1), 1–12.

    Article  Google Scholar 

  • Suvorov, A. (2011). Comparative molecular genetics of Nechalennia speciosa (Charpentier) from geographically distant populations (Zygoptera: Coenagrionidae). Odonatologica, 40(2), 131–136.

    Google Scholar 

  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10), 2731–2739.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Trusov, Y. A., Bogdanova, V. S., & Berdnikov, V. A. (2004). Evolution of regular zone of histone H1 in Fabaceae plants. Journal of Molecular Evolution, 59(4), 546–555.

    Article  CAS  PubMed  Google Scholar 

  • Tshistjakov, Y.A. (2005) Epiplemidae. In: (ed.) Key to the insects of Russian Far East. Vol. 5. Trichoptera and Lepidoptera. Vladivostok: Dalnauka (in Russian).

  • Uimaniemi, L., Orell, M., Mönkkönen, M., Huhta, E., Jokimäki, J., & Lumme, J. (2000). Genetic diversity in Siberian Jay Perisoreus infaustus in fragmented old-growth forests of Fennoscandia. Ecography, 23(6), 669–677.

    Article  Google Scholar 

  • Ukraintseva, V. V. (1996). Late Pleistocene and Holocene floras of Siberia. Botanicheskiy Zhurnal, 81(12), 37–48 (In Rusian).

    Google Scholar 

  • Ursenbacher, S., Carlsson, M., Helfer, V., Tegelström, H., & Fumagalli, L. (2006). Phylogeography and Pleistocene refugia of the adder (Vipera berus) as inferred from mitochondrial DNA sequence data. Molecular Ecology, 15(11), 3425–3437.

    Article  CAS  PubMed  Google Scholar 

  • Velichko, A. A. (1993). Evolution of landscapes and climates of the Northern Eurasia. Late Pleistocene–Holocene, elements of prognosis. I. Regional Plaeogeography. Moscow: Nauka. in Russian.

    Google Scholar 

  • Vila, R., Bell, C. D., Macniven, R., Goldman-Huertas, B., Ree, R. H., Marshall, C. R., Balint, Z., Johnson, K., Benyamini, D., & Pierce, N. E. (2011). Phylogeny and palaeoecology of Polyommatus blue butterflies show Beringia was a climate-regulated gateway to the New World. Proc R Soc B Biol Sci, 278, 2737–2744.

    Article  Google Scholar 

  • Walter, H., & Straka, H. (1970). Arealkunde: floristisch-historische Geobotanik (p. 478). Stutgart: Ulmer.

    Google Scholar 

  • Watson, A. (1967). A survey of extra-Ethiopian Oretinae (Lepidoptera: Drepanidae). Bulletin of the British Museum Natural History. Entomology, 19, 151–221.

    Google Scholar 

  • Wilson, J. J. (2010). Assessing of the value of DNA barcodes and other priority gene regions for molecular phylogenetics in Lepidoptera. PLoS ONE, 5, e10525.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wilson, J. J. (2012). DNA barcoding in insects. Methods in Molecular Biology, 858, 17–46.

    CAS  PubMed  Google Scholar 

  • Yurtsev, B. A. (1981). Relic Steppen Complexes of North-East Asia (p. 168). Novosibirsk: Nauka. In Russian.

    Google Scholar 

  • Zaytseva, O. O., Bogdanova, V. S., & Kosterin, O. E. (2012). Phylogenetic reconstruction at the species and intraspecies levels in the genus Pisum (L.) (peas) using a histone H1 gene. Gene, 504(2), 192–202.

    Article  CAS  PubMed  Google Scholar 

  • Zink, R. M., Drovetski, S. V., & Rohwer, S. (2002). Phylogeographic patterns in the great spotted woodpecker Dendrocopos major across Eurasia. Journal of Avian Biology, 33(2), 175–178.

    Article  Google Scholar 

  • Zolotukhin, V. V., & Pugaev, S. N. (2007). To a study of drepanids (Lepidoptera) of the genus Oreta Walker, 1855 of the fauna of Russia. Eversmannia, 11–12, 14–19 (in Russian).

    Google Scholar 

  • Zuckerkandl, E., & Pauling, L. (1965). Evolutionary divergence and convergence in proteins. In V. Bryson & H. J. Vogel (Eds.), Evolving Genes and Proteins (pp. 97–166). New York: Academic.

    Chapter  Google Scholar 

Download references

Acknowledgments

The work was supported by Integration Complex Projects by Presidium of Siberian Branch of Russian Academy of Sciences No. 10–2 ‘Nature of Academy Town: results of half a century exploitation’, and No.6, ‘Dynamics of ecosystems of Academy Town: monitoring and working out recommendations on rational exploitation’, by collaborative research grant No. 63 ‘Phylogeography of insects, birds and mallams of Siberia and the Far East: the history of formation of faunas and contemporary evolutionary trends” by Siberian and Far Eastern Branches of Russian Academy of Sciences, and by the grant 10-04-00230 by Russian Foundation for Fundamental Research. We are grateful to Lavr Bol’shakov and Alexander Streltzov for offering specimens of E. exornata and to Kim Mitter for offering a sample of O. rosea for our study.

Conflict of Interest

There is no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg E. Kosterin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 122 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solovyev, V.I., Bogdanova, V.S., Dubatolov, V.V. et al. Range of a Palearctic uraniid moth Eversmannia exornata (Lepidoptera: Uraniidae: Epipleminae) was split in the Holocene, as evaluated using histone H1 and COI genes with reference to the Beringian disjunction in the genus Oreta (Lepidoptera: Drepanidae). Org Divers Evol 15, 285–300 (2015). https://doi.org/10.1007/s13127-014-0195-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-014-0195-1

Keywords

Navigation