Skip to main content

Long-Term Evolution of Histone Families: Old Notions and New Insights into Their Mechanisms of Diversification Across Eukaryotes

  • Chapter
  • First Online:
Evolutionary Biology

Abstract

In eukaryotes and some archaebacteria, DNA is found associated with histones in a nucleoprotein complex called chromatin, which allows for a high extent of compaction of genomic DNA within the limited space of the nucleus. Early studies led to the notion that histones exhibit a conserved structural gene organization and limited protein diversity. However, research has been progressively accumulating to demonstrate that the structure, configuration and copy number of histone genes varies widely across organisms as a result of a long-term evolutionary process that promotes genetic variation. This genetic diversity is mirrored by the structural and functional diversity exhibited by the protein members of the different histone families that is, in most instances, concomitant with the complexity of the organism. The present chapter is aimed at providing a comprehensive review of the most recent information on the origin of eukaryotic histone multigene families. Particular attention is paid to the structural and functional constraints acting on histones and their relevance for the progressive diversification of histone variants during evolution, especially as it pertains to histone gene organization and expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhmanova A, Miedema K, Henning W (1996) Identification and characterization of the Drosophila histone H4 replacement gene. FEBS Lett 388:219–222

    CAS  PubMed  Google Scholar 

  • Albig W, Meergans T, Doenecke D (1997a) Characterization of the H1.5 genes completes the set of human H1 subtype genes. Gene 184:141–148

    CAS  PubMed  Google Scholar 

  • Albig W, Kioschis P, Poutska A, Meergans T, Doenecke D (1997b) Human histone gene organization: non-regular arrangement within a large cluster. Genomics 40:314–322

    CAS  PubMed  Google Scholar 

  • Ali T, Thomas JO (2004) Distinct properties of the two putative “globular domains” of the yeast linker histone, Hho1p J Mol Biol 337:1123–1135

    CAS  Google Scholar 

  • Allis CD, Glover CVC, Gorovsky MA (1979) Micronuclei of Tetrahymena contain two types of histone H3. Proc Natl Acad Sci USA 76:4857–4861

    CAS  PubMed  Google Scholar 

  • Alvelo-Ceron D, Niu L, Collart DG (2000) Growth regulation of human variant histone genes and acetylation of the encoded proteins. Mol Biol Rep 27:61–71

    CAS  PubMed  Google Scholar 

  • Arents G, Moudrianakis E (1995) The histone fold: a ubiquitous architectural motif utilized in DNA compaction and protein dimerization. Proc Natl Acad Sci USA 92:11170–11174

    CAS  PubMed  Google Scholar 

  • Arnheim N (1983) Concerted evolution of multigene families. In: Nei M, Koehn RK (eds) Evolution of Genes and Proteins. Sinauer, Sunderland, MA, pp 38–61

    Google Scholar 

  • Ausió J (1999) Histone H1 and evolution of sperm nuclear basic proteins. J Biol Chem 274:31115–31118

    PubMed  Google Scholar 

  • Ausió J (2006) Histone variants: the structure behind the function. Brief Funct Genomic Proteomic 5:228–243

    PubMed  Google Scholar 

  • Ausió J, Abbott DW (2002) The many tales of a tail: carboxyl-terminal tail heterogeneity specializes histona H2A variants for defined chromatin function. Biochemistry 41:5945–5949

    PubMed  Google Scholar 

  • Ausió J, Abbott DW (2004) The role of histone variability in chromatin stability and folding. In: Zlatanova J, Leuba SH (eds) Chromatin Structure and Dynamics: State-of-the-Art. Elsevier, New York, pp 241–290

    Google Scholar 

  • Baldo AM, Les DH, Strausbaugh LD (1999) Potentials and limitations of histone repeat sequences for phylogenetic reconstruction of Sophophora. Mol Biol Evol 16:1511–1520

    CAS  PubMed  Google Scholar 

  • Barski A, Cuddapah S, Cui K, Roth TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837

    CAS  PubMed  Google Scholar 

  • Barzotti R, Pelliccia F, Bucchiarelli E, Rocchini A (2000) Organization, nucleotide sequence, and chromosomal mapping of a tandemly repeated unit containing the four core histone genes and a 5S rRNA gene in an isopod crustacean species. Genome 43:341–345

    CAS  PubMed  Google Scholar 

  • Bruce K, Myers FA, Mantouvalou E, Lefevre P, Greaves I, Bonifer C, Tremethick DJ, Thorne AW, Crane-Robinson C (2005) The replacement histone H2A.Z in hyperacetylated form is a feature of active genes in chicken. Nucleic Acids Res 33:5633–5639

    CAS  PubMed  Google Scholar 

  • Chabouté ME, Chaubet N, Gigot C, Phillips G (1993) Histones and histone genes in higher plants: Structure and genomic organization. Biochimie 75:523–531

    PubMed  Google Scholar 

  • Cho H, Wolffe AP (1994) Xenopus laevis B4, an intron-containing oocyte-specific linker histone-encoding gene. Gene 143:233–238

    CAS  PubMed  Google Scholar 

  • Coen E, Strachan T, Dover GA (1982) Dynamics of concerted evolution of ribosomal DNA and histone gene families in the melanogaster species subgroup of Drosophila. J Mol Biol 158:17–35

    CAS  PubMed  Google Scholar 

  • Collart D, Pockwinse S, Lian JB, Stein JL, Stein GS, Romain PL, Pilapil S, Heubner K, Cannizzaro LA, Croce CM (1992) A human histone H2B.1 Variant gene, located on chromosome 1, utilizes alternative 3 end processing. J Cell Biochem 50:374–385

    CAS  PubMed  Google Scholar 

  • Connor W, Mezquita J, Winkfein RJ, States JC, Dixon GH (1984) Organization of the histone genes in the rainbow trout (Salmo gairdnerii). J Mol Evol 20:272–285

    Google Scholar 

  • Cool D, Banfield D, Honda BM, Smith MJ (1988) Histone genes in three sea star species: Cluster arrangement, transcriptional polarity and analysis of the flanking regions of H3 and H4 genes. J Mol Evol 27:36–44

    CAS  PubMed  Google Scholar 

  • Coon JJ, Ueberheide B, Syka JE, Dryhurst DD, Ausió J, Shabanowitz J, Hunt DF (2005) Protein identification using sequential ion/ion reactions and tandem mass spectrometry. Proc Natl Acad Sci USA 102:9463–9468

    CAS  PubMed  Google Scholar 

  • Costanzi C, Pehrson JR (1998) Histone macroH2A1 is concentrated in the inactive X chromosome of female mammals. Nature 393:599–601

    CAS  PubMed  Google Scholar 

  • Cubonova L, Sandman K, Hallam SJ, DeLong EF, Reeve JN (2005) Histones in Crenarchaea. J Bacteriol 187:5482–5485

    CAS  PubMed  Google Scholar 

  • D'Andrea R, Coles LS, Lesnikowski C, Tabe L, Wells JRE (1985) Chromosomal organization of chicken histone genes: preferred associations and inverted duplications. Mol Cell Biol 5:3108–3115

    PubMed  Google Scholar 

  • del Gaudio N, Potenza N, Stefanoni P, Chiusano ML, Geraci G (1998) Organization and nucleotide sequence of the cluster of five histone genes in the polichaete worm Chaetopterus variopedatus: first record of a H1 histone gene in the phylum annelida. J Mol Evol 46:64–73

    CAS  PubMed  Google Scholar 

  • Doenecke D, Alonso A (1996) Organization and expression of the developmentally regulated H10 histone gene in vertebrates. Int J Dev Biol 40:423–431

    Google Scholar 

  • Doenecke D, Albig W, Bode C, Drabent B, Franke K, Gavenis K, Witt O (1997) Histones: genetic diversity and tissue-specific gene expression. Histochem Cell Biol 107:1–10

    CAS  PubMed  Google Scholar 

  • Domier LL, Rivard JJ, Sabatini LM, Blumenfeld M (1986) Drosophila virilis histone gene clusters lacking H1 coding segments. J Mol Evol 23:149–158

    CAS  PubMed  Google Scholar 

  • Drabent B, Kim J-S, Albig W, Prats E, Cornudella L, Doenecke D (1999) Mytilus edulis histone gene clusters containing only H1 genes. J Mol Evol 49:645–655

    CAS  PubMed  Google Scholar 

  • Eirín-López JM, González-Tizón AM, Martínez A, Méndez J (2002) Molecular and evolutionary analysis of mussel histone genes (Mytilus spp.): possible evidence of an “orphon origin” for H1 histone genes. J Mol Evol 55:272–283

    PubMed  Google Scholar 

  • Eirín-López JM, González-Tizón AM, Martínez A, Méndez J (2004a) Birth-and-death evolution with strong purifying selection in the histone H1 multigene family and the origin of orphon H1 genes. Mol Biol Evol 21:1992–2003

    PubMed  Google Scholar 

  • Eirín-López JM, Ruiz MF, González-Tizón AM, Martínez A, Sánchez L, Méndez J (2004b) Molecular evolutionary characterization of the mussel Mytilus histone multigene family: first record of a tandemly repeated unit of five histone genes containing an H1 subtype with “orphon” features. J Mol Evol 58:131–144

    PubMed  Google Scholar 

  • Eirín-López JM, Ruiz MF, González-Tizón AM, Martínez A, Ausió J, Sánchez L, Méndez J (2005) Common evolutionary origin and birth-and-death process in the replication-independent histone H1 isoforms from vertebrate and invertebrate genomes. J Mol Evol 61:398–407

    PubMed  Google Scholar 

  • Eirín-López JM, Ishibashi T, Ausió J (2008) H2A.Bbd: a quickly evolving hypervariable mammalian histone that destabilizes nucleosomes in an acetylation-independent way. FASEB J 22:316–326

    PubMed  Google Scholar 

  • Ellegren H (2002) Dosage compensation: do birds do it as well? Trends Genet 18:25–28

    CAS  PubMed  Google Scholar 

  • González-Romero R, Ausió J, Méndez J, Eirín-López JM (2008a) Early evolution of histone genes: prevalence of an ‘orphon’ H1 lineage in protostomes and birth-and-death process in the H2A family. J Mol Evol 66:505–518

    PubMed  Google Scholar 

  • González-Romero R, Méndez J, Ausió J, Eirín-López JM (2008b) Quickly evolving histones, nucleosome stability and chromatin folding: All about histone H2A.Bbd. Gene 413:1–7

    PubMed  Google Scholar 

  • Govin J, Caron C, Rousseaux S, Khochbin S (2005) Testis-specific histone H3 expression in somatic cells. Trends Biochem Sci 30:357–359

    CAS  PubMed  Google Scholar 

  • Grayling RA, Sandman K, Reeve JN (1996) Histones and chromatin structure in hyperthermophilic Archaea. FEMS Microbiol Rev 18:203–213

    CAS  PubMed  Google Scholar 

  • Greaves IK, Rangasamy D, Ridgway P, Tremethick DJ (2007) H2A.Z contributes to the unique 3D structure of the centromere. Proc Natl Acad Sci USA 104:525–530

    CAS  PubMed  Google Scholar 

  • Grüter E, Betschart B (2001) Isolation, characterisation and organisation of histone H1 genes in African trypanosomes. Parasitol Res 87:977–984

    PubMed  Google Scholar 

  • Hankeln T, Schmidt ER (1991) The organization and nucleotide sequence of the histone genes of the midge Chironomus thummi. Chromosoma 105:25–31

    Google Scholar 

  • Hankeln T, Schmidt ER (1993) Divergent evolution of an “orphon” histone gene cluster in Chironomus. J Mol Biol 234:1301–1307

    CAS  PubMed  Google Scholar 

  • Happel N, Schulze E, Doenecke D (2005) Characterization of human histone H1x. Biol Chem 386:541–551

    CAS  PubMed  Google Scholar 

  • Hatch CL, Bonner WM (1988) Sequence of cDNAs from mammalian H2A.Z, an evolutionarily diverged but highly conserved basal histone H2A isoprotein species. Nucleic Acids Res 16:1113–1124

    CAS  PubMed  Google Scholar 

  • Hatch CL, Bonner W (1990) The human histone H2A.Z gene. Sequence and regulation. J Biol Chem 265:15211–15218

    CAS  PubMed  Google Scholar 

  • Henikoff S, Ahmad K (2005) Assembly of variant histones into chromatin. Annu Rev Cell Dev Biol 21:133–153

    CAS  PubMed  Google Scholar 

  • Henning W (2003) Chromosomal proteins in the spermatogenesis of Drosophila. Chromosoma 111:489–494

    Google Scholar 

  • Hentschel CC, Birnstiel ML (1981) The organization and expression of histone gene families. Cell 25:301–313

    CAS  PubMed  Google Scholar 

  • Herzog M, Soyer MO (1981) Distinctive features of dinoflegellate chromatin. Absence of nucleosomes in a primitive species Prorocentrum micans. Eur J Cell Biol 23:295–302

    CAS  PubMed  Google Scholar 

  • Hughes AL, Nei M (1990) Evolutionary relationships of class II major-histocompatibility complex genes in mammals. Mol Biol Evol 7:491–514

    CAS  PubMed  Google Scholar 

  • Iguchi N, Tanaka H, Yomogida K, Nishimune Y (2003) Isolation and characterization of a novel cDNA encoding a DNA-binding protein (Hils1) specifically expressed in testicular haploid germ cells. Int J Androl 26:354–365

    CAS  PubMed  Google Scholar 

  • Isenberg I (1979) Histones. Annu Rev Genet 48:159–191

    CAS  Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    CAS  PubMed  Google Scholar 

  • Kanazin V, Blake T, Shoemaker RC (1996) Organization of the histone H3 genes in soybean, barley, and wheat. Mol Gen Genet 250:137–147

    CAS  PubMed  Google Scholar 

  • Kasinsky HE, Lewis JD, Dacks JB, Ausió J (2001) Origin of H1 histones. FASEB J 15:34–42

    CAS  PubMed  Google Scholar 

  • Kedes L (1979) Histone genes and histone messengers. Annu Rev Biochem 225:501–510

    Google Scholar 

  • Khochbin S (2001) Histone H1 diversity: bridging regulatory signals to linker histone function. Gene 271:1–12

    CAS  PubMed  Google Scholar 

  • Kremer H, Henning W (1990) Isolation and characterization of a Drosophila hydei histone DNA repeat unit. Nucleic Acids Res 18:1573–1580

    CAS  PubMed  Google Scholar 

  • Landsman D (1996) Histone H1 in Saccharomyces cerevisiae – a double mystery solved. Trends Biochem Sci 21:287–288

    CAS  PubMed  Google Scholar 

  • Li A, Eirín-López JM, Ausió J (2005) H2AX: tailoring histone H2A for chromatin-dependent genomic integrity. Biochem Cell Biol 83:505–515

    CAS  PubMed  Google Scholar 

  • Liao D (1999) Concerted evolution: molecular mechanism and biological implications. Am J Hum Genet 64:24–30

    CAS  PubMed  Google Scholar 

  • Lifton RP, Goldberg ML, Karp RW, Hogness DS (1977) The organization of the histone genes in Drosophila melanogaster: functions and evolutionary implications. Cold Spring Harbor Symp Quant Biol 42:1047–1051

    Google Scholar 

  • Lindauer A, Müller K, Schmidt R (1993) Two histone H1-encoding genes of the green alga Volvox carteri with features intermediate between plant and animal genes. Gene 239:15–27

    Google Scholar 

  • Malik HS, Henikoff S (2003) Phylogenomics of the nucleosome. Nat Struct Biol 10:882–891

    CAS  PubMed  Google Scholar 

  • Mandl B, Brandt WF, Superti-Furga G, Graninger PG, Birnstiel M, Busslinger M (1997) The five cleavage-stage (CS) histones of the sea urchin are encoded by a maternally expressed family of replacement histone genes: functional equivalence of the CS H1 and frog H1M (B4) proteins. Mol Cell Biol 17:1189–1200

    CAS  PubMed  Google Scholar 

  • Martianov I, Brancorini S, Catena R, Gansmuller A, Kotaja N, Parvinen M, Sassone-Corsi P, Davidson I (2005) Polar nuclear localization of H1T2, a histone H1 variant, required for spermatid elongation and DNA condensation during spermiogenesis. Proc Natl Acad Sci USA 102:2808–2813

    CAS  PubMed  Google Scholar 

  • Martin W, Müller M (1998) The hydrogen hypothesis for the first eukaryote. Nature 392:37–41

    CAS  PubMed  Google Scholar 

  • Marzluff WF (1992) Histone 3′ ends: essential and regulatory functions. Gene Express 2:93–97

    CAS  Google Scholar 

  • Matsuo Y, Yamazaki T (1989) Nucleotide variation and divergence in the histone multigene family in Drosophila melanogaster. Genetics 122:87–97

    CAS  PubMed  Google Scholar 

  • Maxson R, Cohn R, Kedes L, Mohun T (1983a) Expression and organization of histone genes. Annu Rev Genet 17:239–277

    CAS  PubMed  Google Scholar 

  • Maxson R, Mohun T, Gormezano G, Childs G, Kedes L (1983b) Distinct organizations and patterns of expression of early and late histone gene sets in the sea urchin. Nature 301:120–125

    CAS  PubMed  Google Scholar 

  • Miller DJ, Harrison PL, Mahony TJ, McMillan JP, Miles A, Odorico DM, ten Lohuis MR (1993) Feature of histone gene structure and organization are common to diploblastic and tripoblastic metazoans. J Mol Evol 37:245–253

    CAS  PubMed  Google Scholar 

  • Mito Y, Henikoff JG, Henikoff S (2005) Genome-scale profiling of histone H3.3 replacement patterns. Nat Genet 37:1090–1097

    CAS  PubMed  Google Scholar 

  • Murphy LD, Zimmerman SB (1997) Stabilization of compact spermidine nucleoids from Escherichia coli under crowded conditions: implications for in vivo nucleoid structure. J Struct Biol 119:336–346

    CAS  PubMed  Google Scholar 

  • Nei M, Hughes AL (1992) Balanced polymorphism and evolution by the birth-and-death process in the MHC loci. In: Tsuji K, Aizawa M, Sasazuki T (eds) 11th Histocompatibility Workshop and Conference. Oxford University Press, Oxford/England, pp 27–38

    Google Scholar 

  • Nei M, Rooney AP (2006) Concerted and birth-and-death evolution in multigene families. Annu Rev Genet 39:121–152

    Google Scholar 

  • Nei M, Gu X, Sitnikova T (1997) Evolution by the birth-and-death process in multigene families of the vertebrate immune system. Proc Natl Acad Sci USA 94:7799–7806

    CAS  PubMed  Google Scholar 

  • Nei M, Rogozin IB, Piontkivska H (2000) Purifying selection and birth-and-death evolution in the ubiquitin gene family. Proc Natl Acad Sci USA 97:10866–10871

    CAS  PubMed  Google Scholar 

  • Ohta T (1983) On the evolution of multigene families. Theor Popul Biol 23:216–240

    CAS  PubMed  Google Scholar 

  • Ota T, Nei M (1994) Divergent evolution and evolution by the birth-and-death process in the immunoglobulin VH gene family. Mol Biol Evol 11:469–482

    CAS  PubMed  Google Scholar 

  • Ouzounis CA, Kyrpides NC (1996) Parallel origin of the nucleosome core and eukaryotic transcription from archaea. J Mol Evol 42:234–239

    CAS  PubMed  Google Scholar 

  • Owen-Hughes T (2003) Colworth memorial lecture. Pathways for remodelling chromatin. Biochem Soc Trans 31:893–905

    CAS  PubMed  Google Scholar 

  • Palmer DK, O'Day K, Wener MH, Andrews BS, Margolis RL (1987) A 17-kD centromere protein (CENP-A) copurifies with nucleosome core particles and with histones. J Cell Biol 104:805–815

    CAS  PubMed  Google Scholar 

  • Panyim S, Chalkey R (1969) High resolution acrylamide gel electrophoresis of histones. Arch Biochem Biophys 63:265–297

    Google Scholar 

  • Parseghian MH, Hamkalo BA (2001) A compendium of the H1 family of somatic subtypes: an elusive cast of characters and their characteristics. Biochem Cell Biol 79:289–304

    CAS  PubMed  Google Scholar 

  • Parseghian MH, Newcomb RL, Winokur ST, Hamkalo BA (2000) The distribution of somatic H1 subtypes is nonrandom on active vs. inactive chromatin: distribution in human fetal fibroblasts. Chromosome Res 8:405–424

    CAS  PubMed  Google Scholar 

  • Pereira SL, Grayling RA, Lurz R, Reeve JN (1997) Archaeal nucleosomes. Proc Natl Acad Sci USA 94:12633–12637

    CAS  PubMed  Google Scholar 

  • Piontkivska H, Rooney AP, Nei M (2002) Purifying selection and birth-and-death evolution in the histone H4 gene family. Mol Biol Evol 19:689–697

    CAS  PubMed  Google Scholar 

  • Prescott DM (1994) The DNA of ciliated protozoa. Microbiol Rev 58:233–267

    CAS  PubMed  Google Scholar 

  • Reeve JN, Sandman K, Daniels CJ (1997) Archaeal histones, nucleosomes, and transcription initiation. Cell 89:999–1002

    CAS  PubMed  Google Scholar 

  • Rooney AP, Piontkivska H, Nei M (2002) Molecular evolution of the nontandemly repeated genes of the histone 3 multigene family. Mol Biol Evol 19:68–75

    CAS  PubMed  Google Scholar 

  • Ruberti I, Fragapane P, Pierandrei-Arnaldi P, Beccari E, Arnaldi F, Bozzoni I (1982) Characterization of histone genes isolated from Xenopus laevis and Xenopus tropicalis genomic libraries. Nucleic Acids Res 10:1544–1550

    Google Scholar 

  • Ruiz-Carrillo A, Affolter M, Renaud J (1983) Genomic organization of the genes coding for the main six histones of the chicken: complete sequence of the H5 gene. J Mol Biol 170:843–859

    CAS  PubMed  Google Scholar 

  • Sandman K, Reeve JN (1998) Origin of the eukaryotic nucleus. Science 281:501–503

    Google Scholar 

  • Sandman K, Reeve JN (2005) Archaeal chromatin proteins: different structures but common function? Curr Opin Microbiol 8:656–661

    CAS  PubMed  Google Scholar 

  • Sandman K, Reeve JN (2006) Archaeal histones and the origin of the histone fold. Curr Opin Microbiol 9:520–525

    CAS  PubMed  Google Scholar 

  • Sandman K, Krzycki JA, Dobrinski B, Lurz R, Reeve JN (1990) HMf, a DNA-binding protein isolated from the hyperthermophilic archaeon Methanothermus fervidus, is most closely related to histones. Proc Natl Acad Sci USA 87:5788–5791

    CAS  PubMed  Google Scholar 

  • Sandman K, Pereira SL, Reeve JN (1998) Diversity of prokaryotic chromosomal proteins and the origin of the nucleosome. Cell Mol Life Sci 54:1350–1364

    CAS  PubMed  Google Scholar 

  • Sanicola M, Ward S, Childs G, Emmons SW (1990) Identification of a Caenorhabditis elegans histone H1 gene family. Characterization of a family member containing an intron and encoding poly(A) + mRNA. J Mol Biol 212:259–268

    CAS  PubMed  Google Scholar 

  • Schienman JE, Lozovskaya ER, Strausbaugh LD. (1998) Drosophila virilis has atypical kinds and arrangements of histone repeats. Chromosoma 107:529–539

    CAS  PubMed  Google Scholar 

  • Schulze E, Schulze B (1995) The vertebrate linker histones H10, H5, and H1M are descendants of invertebrate “orphon” histone H1 genes. J Mol Evol 41:833–840

    CAS  PubMed  Google Scholar 

  • Scott AC, Wells JR (1976) Reiteration frequency of the gene for tissue-specific histone H5 in the chicken genome. Nature 259:635–638

    CAS  PubMed  Google Scholar 

  • Sellos D, Krawetz SA, Dixon GH (1990) Organization and complete nucleotide sequences of the core-histone-gene cluster of the annelid Platynereis dumerilii. Eur J Biochem 190:21–29

    CAS  PubMed  Google Scholar 

  • Seyedin SM, Kistler WS (1979) H1 histone subfractions of mammalian testes. 1. Organ specificity in the rat. Biochemistry 18:1371–1375

    CAS  PubMed  Google Scholar 

  • Slerasev AI, Belova GI, Kozyavkin SA, Lake JA (1984) Evidence for an early prokaryotic origin of histones H2A and H4 prior to the emergence of eukaryotes. Nucleic Acids Res 26:427–430

    Google Scholar 

  • Smith BJ, Harris MR, Sigournay CM, Mayes ELV, Bustin M (1984) A survey of H10- and H5-like protein structure and distribution in lower and higher eukaryotes. Eur J Biochem 138:309–317

    CAS  PubMed  Google Scholar 

  • Smith GP (1974) Unequal crossover and the evolution of multigene families. Cold Spring Harbor Symp Quant Biol 38:507–513

    CAS  PubMed  Google Scholar 

  • Starich MR, Sandman K, Reeve JN, Summers MF (1996) NMR Structure of the HMfB from the hyperthermophile, Methanothermus fervidus, confirms that this archaeal protein is a histone. J Mol Biol 255:187–203

    CAS  PubMed  Google Scholar 

  • Stephenson E, Erba H, Gall J (1981) Characterization of a cloned histone gene cluster of the newt Notophtalmus viridescens. Nucleic Acids Res 9:2281–2295

    CAS  PubMed  Google Scholar 

  • Sures I, Lowry J, Kedes L (1978) The DNA sequence of the sea urchin (S. purpuratus) H2A, H2B and H3 histone coding and spacer regions. Cell 15:1033–1044

    CAS  PubMed  Google Scholar 

  • Tanaka M, Hennebold JD, MacFarlane J, Adashi EY (2001) A mammalian oocyte-specific linker histone gene H1oo: homology with the genes for oocyte-specific cleavage stage histones (cs-H1) of sea urchin and the B4/H1M histone of the frog. Development 128:655–664

    CAS  PubMed  Google Scholar 

  • Thatcher TH, Gorovsky MA (1994) Phylogenetic analysis of the core histones H2A, H2B, H3, and H4. Nucleic Acids Res 22:174–179

    CAS  PubMed  Google Scholar 

  • Tsunemoto K, Matsuo Y (2001) Molecular evolutionary analysis of a histone gene repeating unit from Drosophila simulans. Genes Genet Syst 76:355–361

    CAS  PubMed  Google Scholar 

  • Turner PC, Woodland HR (1983) Histone gene number and organisation in Xenopus: Xenopus borealis has a homogeneous major cluster. Nucleic Acids Res 11:971–986

    CAS  PubMed  Google Scholar 

  • Turner PC, Aldridge TC, Woodland HR, Old RW (1983) Nucleotide sequences of H1 histone genes from Xenopus laevis. A recently diverged pair of H1 genes and an unusual H1 pseudogene. Nucleic Acids Res 11:4093–4106

    CAS  PubMed  Google Scholar 

  • van Dongen W, de Laaf L, Zaal R, Moorman AF, Destree O (1981) The organization of the histone genes in the genome of Xenopus laevis. Nucleic Acids Res 25:2297–2311

    Google Scholar 

  • van Holde KE (1988) Chromatin. Springer-Verlag, New York

    Google Scholar 

  • Walter L, Klinga-Levan K, Helou K, Albig W, Drabent B, Doenecke D, Günther E, Levan G (1996) Chromosomal mapping of rat histone genes H1fv (H10), H1d, H1t, Th2a and Th2b. Cytogenet Cell Genet 75:136–139

    CAS  PubMed  Google Scholar 

  • Wang ZF, Sirotkin AM, Buchold GM, Skoultchi AI, Marzluff WF (1997) The mouse histone H1 genes: gene organization and differential regulation. J Mol Biol 271:124–138

    CAS  PubMed  Google Scholar 

  • Wells JRE, Kedes L (1985) Structure of a human histone cDNA: evidence that basally expressed histone genes have intervening sequences and encode polyadenylated mRNAs. Proc Natl Acad Sci USA 82:2834–2838

    CAS  PubMed  Google Scholar 

  • Wells JRE, Bains W, Kedes L (1986) Codon usage of histone gene families in higher eukaryotes reflects functional rather than phylogenetic relationships. J Mol Evol 23:224–241

    CAS  PubMed  Google Scholar 

  • Witt O, Albig W, Doenecke D (1996) Testis-specific expression of a novel human H3 histone gene. Exp Cell Res 229:301–306

    CAS  PubMed  Google Scholar 

  • Worcel A, Burgi E (1972) On the structure of the folded chromosome of Escherichia coli. J Mol Biol 71:127–147

    CAS  PubMed  Google Scholar 

  • Yan W, Lang M, Burns KH, Matzuk MM (2003) HILS1 is a spermatid-specific linker histone H1-like protein implicated in chromatin remodeling during mammalian spermiogenesis. Proc Natl Acad Sci USA 100:10546–10551

    CAS  PubMed  Google Scholar 

  • Zhang J, Dyer KD, Rosenberg HF (2000) Evolution of the rodent eosinophil-associated RNase gene family by rapid gene sorting and positive selection. Proc Natl Acad Sci USA 97:4701–4706

    CAS  PubMed  Google Scholar 

  • Zlatanova J (1997) Archaeal chromatin: virtual or real? Proc Natl Acad Sci USA 94:12251–12254

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded in part by the Canadian Institutes of Health Research (CIHR) Grant MOP-57718 to Juan Ausió and by the Marie Curie Outgoing International Fellowship (MOIF-CT-2005–021900) within the 6th Framework Programme (European Union) and by a contract within the Isidro Parga Pondal Program (Xunta de Galicia) to José M. Eirín-López. Rodrigo González-Romero is the recipient of a fellowship from the Diputacion de A Coruña.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Eirín-López .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eirín-López, J.M., González-Romero, R., Dryhurst, D., Méndez, J., Ausió, J. (2009). Long-Term Evolution of Histone Families: Old Notions and New Insights into Their Mechanisms of Diversification Across Eukaryotes. In: Pontarotti, P. (eds) Evolutionary Biology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00952-5_8

Download citation

Publish with us

Policies and ethics