Skip to main content

Advertisement

Log in

Involvement of histone methylation in the regulation of neuronal death

  • Review
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Neuronal death occurs in various physiological and pathological processes, and apoptosis, necrosis, and ferroptosis are three major forms of neuronal death. Neuronal apoptosis, necrosis, and ferroptosis are widely identified to involve the progress of stroke, Parkinson’s disease, and Alzheimer’s disease. A growing body of evidence has pointed out that neuronal death is tightly associated with expression of related genes and alteration of signaling molecules. In addition, recently, epigenetics has been increasingly focused on as a vital regulatory mechanism for neuronal apoptosis, necrosis, and ferroptosis, providing a new direction for treating nervous system diseases. Moreover, growing researches suggest that histone methylation or demethylation is involved in the processes of neuronal apoptosis, necrosis, and ferroptosis. These researches may imply that studying the potential roles of histone methylation is essential for treating the nervous system diseases. Here, we review potential roles of histone methylation and demethylation in neuronal death, which may give us a new direction in treating the nervous system diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Abdalkader M et al (2018) Targeting Nrf2 to suppress ferroptosis and mitochondrial dysfunction in neurodegeneration. Front Neurosci 12:466

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ali Shah S et al (2013) Anthocyanins protect against ethanol-induced neuronal apoptosis via GABAB1 receptors intracellular signaling in prenatal rat hippocampal neurons. Mol Neurobiol 48(1):257–269

    Article  CAS  PubMed  Google Scholar 

  3. Bal-Price A, Brown GC (2001) Inflammatory neurodegeneration mediated by nitric oxide from activated glia-inhibiting neuronal respiration, causing glutamate release and excitotoxicity. J Neurosci 21(17):6480–6491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bano D et al (2005) Cleavage of the plasma membrane Na+/Ca2+ exchanger in excitotoxicity. Cell 120(2):275–285

    Article  CAS  PubMed  Google Scholar 

  5. Boyce M, Yuan J (2006) Cellular response to endoplasmic reticulum stress: a matter of life or death. Cell Death Differ 13(3):363–373

    Article  CAS  PubMed  Google Scholar 

  6. Büttner N et al (2010) Af9/Mllt3 interferes with Tbr1 expression through epigenetic modification of histone H3K79 during development of the cerebral cortex. P Natl Acad Sci USA 107(15):7042–7047

    Article  Google Scholar 

  7. Cai LJ et al (2020) LncRNA MALAT1 facilitates inflammasome activation via epigenetic suppression of Nrf2 in Parkinson's d isease. Mol Brain 13(1):130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen S et al (2020) Iron metabolism and ferroptosis in epilepsy. Front Neurosci 14:601193

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cohen A et al (2015) Humanin derivatives inhibit necrotic cell death in neurons. Mol Med 21:505–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Collins BE et al (2019) Histone H3 lysine K4 methylation and its role in learning and memory. Epigenetics Chromatin 12(1):7

    Article  PubMed  PubMed Central  Google Scholar 

  11. Coquenlorge S et al (2014) Modulation of lipopolysaccharide-induced neuronal response by activation of the enteric nervous system. J Neuroinflammation 11:202

    Article  PubMed  PubMed Central  Google Scholar 

  12. Datta A et al (2020) Cell death pathways in ischemic stroke and targeted pharmacotherapy. Transl Stroke Res 11(6):1185–1202

    Article  PubMed  Google Scholar 

  13. Davidson AJ (2011) Anesthesia and neurotoxicity to the developing brain: the clinical relevance. Paediatr Anaesth 21(7):716–721

    Article  PubMed  Google Scholar 

  14. Di Meglio T et al (2013) Ezh2 orchestrates topographic migration and connectivity of mouse precerebellar neurons. Science 339(6116):204–207

    Article  PubMed  PubMed Central  Google Scholar 

  15. Diwakarla S et al (2009) Differential insult-dependent recruitment of the intrinsic mitochondrial pathway during neuronal programmed cell death. Cell Mol Life Sci 66(1):156–172

    Article  CAS  PubMed  Google Scholar 

  16. Docagne F et al (2002) Smad3-dependent induction of plasminogen activator inhibitor-1 in astrocytes mediates neuroprotective activity of transforming growth factor-beta 1 against NMDA-induced necrosis. Mol Cell Neurosci 21(4):634–644

    Article  CAS  PubMed  Google Scholar 

  17. Estarás C et al (2012) Genome-wide analysis reveals that Smad3 and JMJD3 HDM co-activate the neural developmental program. Development 139(15):2681–2691

    Article  PubMed  Google Scholar 

  18. Fagiolini M, Jensen CL, Champagne FA (2009) Epigenetic influences on brain development and plasticity. Curr Opin Neurobiol 19(2):207–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fan J et al (2012) Edaravone protects cortical neurons from apoptosis by inhibiting the translocation of BAX and Increasing the interaction between 14-3-3 and p-BAD. Int J Neurosci 122(11):665–674

    Article  CAS  PubMed  Google Scholar 

  20. Fan W et al (2018) S-oxiracetam ameliorates ischemic stroke induced neuronal apoptosis through up-regulating α7 nAChR and PI3K / Akt / GSK3β signal pathway in rats. Neurochem int 115:50–60

    Article  CAS  PubMed  Google Scholar 

  21. Fan Z et al (2017) Nrf2-Keap1 pathway promotes cell proliferation and diminishes ferroptosis. Oncogenesis 6(8):e371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fargo KN et al (2008) Androgen regulates neuritin mRNA levels in an in vivo model of steroid-enhanced peripheral nerve regeneration. J Neurotrauma 25(5):561–566

    Article  PubMed  Google Scholar 

  23. Feng X et al (2016) Polycomb Ezh2 controls the fate of GABAergic neurons in the embryonic cerebellum. Development 143(11):1971–1980

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Feng Z et al (2020) Mixed lineage leukemia 1 promoted neuron apoptosis in ischemic penumbra via regulatinG ASK-1/TNF-α complex. Front Neuroanat 14:36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ferrari F et al (2020) DOT1L-mediated murine neuronal differentiation associates with H3K79me2 accumulation and preserves SOX2-enhancer accessibility. Nat Commun 11(1):5200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fröhlich M et al (2016) Inhibition of BCL-2 leads to increased apoptosis and delayed neuronal differentiation in human ReNcell VM cells in vitro. Int J Dev Neurosci 48:9–17

    Article  PubMed  Google Scholar 

  27. Gao S et al (2015) NMDAR-mediated hippocampal neuronal death is exacerbated by activities of ASIC1a. Neurotox Res 28(2):122–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ge MH et al (2021) Zinc attenuates ferroptosis and promotes functional recovery in contusion spinal cord injury by activating Nrf2/GPX4 defense pathway. Cns Neurosci Ther 27(9):1023–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Griñán-Ferré C et al (2019) Pharmacological inhibition of G9a/GLP restores cognition and reduces oxidative stress, neuroinflammation and β-amyloid plaques in an early-onset Alzheimer's disease mouse model. Aging (Albany NY) 11(23):11591–11608

    Article  PubMed  Google Scholar 

  30. Gupta R et al (2019) An augmentation in histone dimethylation at lysine nine residues elicits vision impairment following traumatic brain injury. Free Radical Bio Med 134:630–643

    Article  CAS  Google Scholar 

  31. Hollville E, Romero SE, Deshmukh M (2019) Apoptotic cell death regulation in neurons. FEBS J 286(17):3276–3298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hu E et al (2020) Beta-hydroxybutyrate enhances BDNF expression by increasing H3K4me3 and decreasing H2AK119ub in hippocampal neurons. Front Neurosci 14:591177

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hu K et al (2019) CTBP1 confers protection for hippocampal and cortical neurons in rat models of Alzheimer's disease. Neuroimmunomodulation 26(3):139–152

    Article  CAS  PubMed  Google Scholar 

  34. Hwang JY et al (2014) The gene silencing transcription factor REST represses miR-132 expression in hippocampal neurons dest ined to die. J Mol Biol 426(20):3454–3466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jakovcevski M et al (2015) Neuronal Kmt2a/Mll1 histone methyltransferase is essential for prefrontal synaptic plasticity and working memory. J Neurosci 35(13):5097–5108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jeon GS et al (2013) Effect of JGK-263 as a new glycogen synthase kinase-3β inhibitor on extrinsic apoptosis pathway in motor neuronal cells. Biochem Bioph Res Co 439(2):309–314

    Article  CAS  Google Scholar 

  37. Jing X et al (2015) Dimethyl fumarate attenuates 6-OHDA-induced neurotoxicity in SH-SY5Y cells and in animal model of Parkinson's disease by enhancing Nrf2 activity. Neuroscience 286:131–140

    Article  CAS  PubMed  Google Scholar 

  38. Krajewska M et al (2011) Neuronal deletion of caspase 8 protects against brain injury in mouse models of controlled cortical impact and kainic acid-induced excitotoxicity. PLoS One 6(9):e24341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kristiansen M, Ham J (2014) Programmed cell death during neuronal development: the sympathetic neuron model. Cell Death Differ 21(7):1025–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lan B et al (2020) Extract of Naotaifang, a compound Chinese herbal medicine, protects neuron ferroptosis induced by acu te cerebral ischemia in rats. J Integr Med 18(4):344–350

    Article  PubMed  Google Scholar 

  41. Lan T et al (2023) H3K9 trimethylation dictates neuronal ferroptosis through repressing Tfr1. J Cerebr Blood F Met 43(8):1365–1381

    Article  CAS  Google Scholar 

  42. Lewis EM, Kroll KL (2018) Development and disease in a dish: the epigenetics of neurodevelopmental disorders. Epigenomics-Uk 10(2):219–231

    Article  CAS  Google Scholar 

  43. Li A et al (2015) Lysine-specific demethylase 1 inhibitors protect cochlear spiral ganglion neurons against cisplatin-i nduced damage. Neuroreport 26(9):539–547

    Article  PubMed  Google Scholar 

  44. Li Q et al (2019) Baicalein Exerts Neuroprotective Effects in FeCl3-Induced Posttraumatic Epileptic Seizures via Suppre ssing Ferroptosis. Front Pharmacol 10:638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Linseman DA et al (2004) Glycogen synthase kinase-3beta phosphorylates Bax and promotes its mitochondrial localization during neuronal apoptosis. J Neurosci 24(44):9993–10002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu K et al (2014) Neuronal necrosis is regulated by a conserved chromatin-modifying cascade. Proc Natl Acad Sci U S A 111(38):13960–13965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu Q et al (2018) Neuritin provides neuroprotection against experimental traumatic brain injury in rats. Int J Neurosci 128(9):811–820

    Article  CAS  PubMed  Google Scholar 

  48. Liu XY et al (2008) The neuroprotective potential of phase II enzyme inducer on motor neuron survival in traumatic spinal cord injury in vitro. Cell Mol Neurobiol 28(5):769–779

    Article  PubMed  Google Scholar 

  49. Liu Z et al (2020) Fostered Nrf2 expression antagonizes iron overload and glutathione depletion to promote resistance of neuron-like cells to ferroptosis. Toxicol Appl Pharmacol 407:115241

    Article  CAS  PubMed  Google Scholar 

  50. Lorenc-Koci E, Czarnecka A (2013) Role of nitric oxide in the regulation of motor function. An overview of behavioral, biochemical and histological studies in animal models. Pharmacol Rep 65(5):1043–1055

    Article  CAS  PubMed  Google Scholar 

  51. Ma Y, Hendershot LM (2003) Delineation of a negative feedback regulatory loop that controls protein translation during endoplasmic reticulum stress. J Biol Chem 278(37):34864–34873

    Article  CAS  PubMed  Google Scholar 

  52. Mao C et al (2021) DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature 593(7860):586–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Marinova Z et al (2011) Histone deacetylase inhibition alters histone methylation associated with heat shock protein 70 promoter modifications in astrocytes and neurons. Neuropharmacology 60(7-8):1109–1115

    Article  CAS  PubMed  Google Scholar 

  54. Mastroberardino PG et al (2009) A novel transferrin/TfR2-mediated mitochondrial iron transport system is disrupted in Parkinson's disease. Neurobiol Dis 34(3):417–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mi Y et al (2019) The emerging roles of ferroptosis in Huntington's disease. Neuromolecular Med 21(2):110–119

    Article  CAS  PubMed  Google Scholar 

  56. Molinaro P et al (2008) Targeted disruption of Na+/Ca2+ exchanger 3 (NCX3) gene leads to a worsening of ischemic brain damage. J Neurosci 28(5):1179–1184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Moreau C et al (2018) Iron as a therapeutic target for Parkinson's disease. Mov Disord 33(4):568–574

    Article  Google Scholar 

  58. Mu MD et al (2020) Therapeutic effect of a histone demethylase inhibitor in Parkinson's disease. Cell Death Dis 11(10):927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nowoslawski L, Klocke BJ, Roth KA (2005) Molecular regulation of acute ethanol-induced neuron apoptosis. J Neuropathol Exp Neurol 64(6):490–497

    Article  CAS  PubMed  Google Scholar 

  60. Okazawa H (2021) Intracellular amyloid hypothesis for ultra-early phase pathology of Alzheimer's disease. Neuropathology 41(2):93–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Olianas MC, Dedoni S, Onali P (2019) Inhibition of TNF-α-induced neuronal apoptosis by antidepressants acting through the lysophosphatidic acid receptor LPA1. Apoptosis 24(5-6):478–498

    Article  CAS  PubMed  Google Scholar 

  62. Palomer E et al (2016) Neuronal activity controls Bdnf expression via polycomb de-repression and CREB/CBP/JMJD3 activation i n mature neurons. Nat Commun 7:11081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Prusevich P et al (2014) A selective phenelzine analogue inhibitor of histone demethylase LSD1. ACS Chem Biol 9(6):1284–1293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ramazi S, Allahverdi A, Zahiri J (2020) Evaluation of post-translational modifications in histone proteins: a review on histone modification defects in developmental and neurological disorders. J Biosciences 45:135

    Article  CAS  Google Scholar 

  65. Ran R et al (2004) Hsp70 mutant proteins modulate additional apoptotic pathways and improve cell survival. Cell Stress Chaperones 9(3):229–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Raychaudhuri R, Ujjani C (2022) Targeted therapy for relapsed/refractory follicular lymphoma: focus on clinical utility of tazemetostat. Onco Targets Ther 15:193–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Raychaudhuri S et al (2010) Neuroglobin protects nerve cells from apoptosis by inhibiting the intrinsic pathway of cell death. Apoptosis 15(4):401–411

    Article  CAS  PubMed  Google Scholar 

  68. Reyes NA et al (2010) Blocking the mitochondrial apoptotic pathway preserves motor neuron viability and function in a mouse model of amyotrophic lateral sclerosis. J Clin Invest 120(10):3673–3679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Roopra A et al (2004) Localized domains of G9a-mediated histone methylation are required for silencing of neuronal genes. Mol Cell 14(6):727–738

    Article  CAS  PubMed  Google Scholar 

  70. Sabirzhanov B et al (2012) Over-expression of HSP70 attenuates caspase-dependent and caspase-independent pathways and inhibits neuronal apoptosis. J Neurochem 123(4):542–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sekimukai D, Honda S, Negi A (2009) RNA interference for apoptosis signal-regulating kinase-1 (ASK-1) rescues photoreceptor death in the rd1 mouse. Mol Vis 15:1764–1773

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Sendrowski K et al (2013) Study of the protective effect of calcium channel blockers against neuronal damage induced by glutama te in cultured hippocampal neurons. Pharmacol Rep 65(3):730–736

    Article  PubMed  Google Scholar 

  73. Sendrowski K et al (2013) Study of the protective effect of calcium channel blockers against neuronal damage induced by glutamate in cultured hippocampal neurons. Pharmacol rep 65(3):730–736

    Article  PubMed  Google Scholar 

  74. Sheng L et al (2015) Mechanisms of TiO2 nanoparticle-induced neuronal apoptosis in rat primary cultured hippocampal neurons. J Biomed Mater Res A 103(3):1141–1149

    Article  PubMed  Google Scholar 

  75. Sher F, Boddeke E, Copray S (2011) Ezh2 expression in astrocytes induces their dedifferentiation toward neural stem cells. Cell Reprogram 13(1):1–6

    Article  CAS  PubMed  Google Scholar 

  76. Singh V et al (2019) Modes of calcium regulation in ischemic neuron. Indian J Clin Biochem 34(3):246–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Singhal NK et al (2015) Changes in methionine metabolism and histone H3 trimethylation are linked to mitochondrial defects in multiple sclerosis. J Neurosci 35(45):15170–15186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Son H et al (2012) Neuritin produces antidepressant actions and blocks the neuronal and behavioral deficits caused by chronic stress. Proc Natl Acad Sci U S A 109(28):11378–11383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Su Y et al (2022) The progress of research on histone methylation in ischemic stroke pathogenesis. J Physiol Biochem 78(1):1–8

    Article  PubMed  Google Scholar 

  80. Subbanna S et al (2014) Ethanol induced acetylation of histone at G9a exon1 and G9a-mediated histone H3 dimethylation leads to neurodegeneration in neonatal mice. Neuroscience 258:422–432

    Article  CAS  PubMed  Google Scholar 

  81. Sun D et al (2018) Canonical transient receptor potential channel 3 contributes to febrile seizure inducing neuronal cell death and neuroinflammatioN. Cell Mol Neurobiol 38(6):1215–1226

    Article  CAS  PubMed  Google Scholar 

  82. Tsutsumi T et al (2016) Potential neuroprotective effects of an LSD1 inhibitor in retinal gaNGLION cells via p38 MAPK activity. Invest Ophthalmol Vis Sci 57(14):6461–6473

    Article  CAS  PubMed  Google Scholar 

  83. Turovskaya MV et al (2020) BDNF overexpression enhances the preconditioning effect of brief episodes of hypoxia, promoting survival of GABAergic neurons. Neurosci Bull 36(7):733–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Utsunomiya S et al (2021) Ezh1 regulates expression of Cpg15/Neuritin in mouse cortical neurons. Drug Discov Ther 15(2):55–65

    Article  CAS  PubMed  Google Scholar 

  85. Uzdensky AB (2019) Apoptosis regulation in the penumbra after ischemic stroke: expression of pro- and antiapoptotic proteins. Apoptosis 24(9-10):687–702

    Article  CAS  PubMed  Google Scholar 

  86. Vallerga CL et al (2020) Analysis of DNA methylation associates the cystine-glutamate antiporter SLC7A11 with risk of Parkinso n's disease. Nat Commun 11(1):1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Vanden Berghe T et al (2014) Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol 15(2):135–147

    Article  Google Scholar 

  88. Vyas RN, Meredith D, Lane RP (2017) Lysine-specific demethylase-1 (LSD1) depletion disrupts monogenic and monoallelic odorant receptor (O R) expression in an olfactory neuronal cell line. Mol Cell Neurosci 82:1–11

    Article  CAS  PubMed  Google Scholar 

  89. Wan J, Ren H, Wang J (2019) Iron toxicity, lipid peroxidation and ferroptosis after intracerebral haemorrhage. Stroke Vasc Neurol 4(2):93–95

    Article  PubMed  PubMed Central  Google Scholar 

  90. Wang F et al (2019) Role of MLL in the modification of H3K4me3 in aluminium-induced cognitive dysfunction. Chemosphere 232:121–129

    Article  CAS  PubMed  Google Scholar 

  91. Wang Y et al (2020) Histone demethylase KDM3B protects against ferroptosis by upregulating SLC7A11. FEBS Open Bio 10(4):637–643

    Article  PubMed  PubMed Central  Google Scholar 

  92. Wang Z et al (2021) The role of EZH2 inhibitor, GSK-126, in seizure susceptibility. J Mol Neurosci 71(3):556–564

    Article  CAS  PubMed  Google Scholar 

  93. Wang Z et al (2022) GSK-126 protects CA1 neurons from H3K27me3-mediated apoptosis in cerebral ischemia. Mol Neurobiol 59(4):2552–2562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wever I et al (2018) EZH2 influences mdDA neuronal differentiation, maintenance and survival. Front Mol Neurosci 11:491

    Article  CAS  PubMed  Google Scholar 

  95. Windelborn JA, Lipton P (2008) Lysosomal release of cathepsins causes ischemic damage in the rat hippocampal slice and depends on NMDA-mediated calcium influx, arachidonic acid metabolism, and free radical production. J Neurochem 106(1):56–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wongprayoon P, Govitrapong P (2017) Melatonin protects SH-SY5Y neuronal cells against methamphetamine-induced endoplasmic reticulum stress and apoptotic cell deatH. Neurotox res 31(1):1–10

    Article  CAS  PubMed  Google Scholar 

  97. Xie N et al (2020) FAM134B attenuates seizure-induced apoptosis and endoplasmic reticulum stress in hippocampal neurons by promoting autophagy. Cell Mol Neurobiol 40(8):1297–1305

    Article  CAS  PubMed  Google Scholar 

  98. Yadav R, Weng HR (2017) EZH2 regulates spinal neuroinflammation in rats with neuropathic pain. Neuroscience 349:106–117

    Article  CAS  PubMed  Google Scholar 

  99. Yang YN et al (2018) Granulocyte colony-stimulating factor alleviates bacterial-induced neuronal apoptotic damage in the neonatal rat brain through epigenetic histone modification. Oxid Med Cell Longev 2018:9797146

    Article  PubMed  PubMed Central  Google Scholar 

  100. Yu B et al (2014) Single prolonged stresS induces ATF6 alpha-dependent endoplasmic reticulum stress and the apoptotic p rocess in medial frontal cortex neurons. BMC Neurosci 15:115

    Article  PubMed  PubMed Central  Google Scholar 

  101. Yuan J (2009) Neuroprotective strategies targeting apoptotic and necrotic cell death for stroke. Apoptosis 14(4):469–477

    Article  PubMed  PubMed Central  Google Scholar 

  102. Zhang P et al (2020) Ferroptosis was more initial in cell death caused by iron overload and its underlying mechanism in Pa rkinson's disease. Free Radic Biol Med 152:227–234

    Article  CAS  PubMed  Google Scholar 

  103. Zhang P et al (2020) Ferroptosis was more initial in cell death caused by iron overload and its underlying mechanism in Parkinson's disease. Free Radic Biol Med 152:227–234

    Article  CAS  PubMed  Google Scholar 

  104. Zheng J et al (2018) Inhibiting EZH2 rescued bupivacaine-induced neuronal apoptosis in spinal cord dorsal root ganglia in mice. J Anesth 32(4):524–530

    Article  PubMed  Google Scholar 

  105. Zhong J et al (2006) Lithium protects ethanol-induced neuronal apoptosis. Biochem Biophys Res Commun 350(4):905–910

    Article  CAS  PubMed  Google Scholar 

  106. Zhong KL et al (2019) Isosteviol sodium protects neural cells against hypoxia-induced apoptosis through inhibitinG MAPK and NF-κB pathways. J Stroke Cerebrovasc 28(1):175–184

    Article  Google Scholar 

Download references

Acknowledgements

We thank the National Natural Sciences Foundation of China for its support.

Funding

This project is supported by National Natural Sciences Foundation of China (grant number 81801168).

Author information

Authors and Affiliations

Authors

Contributions

ZW and LZ conceived and wrote the manuscript, TZ and YS edited the manuscript, and LH prepared the figures. All authors read and approved the final version of the manuscript. The authors declare that all data were generated in-house and that no paper mill was used.

Corresponding author

Correspondence to Zhongcheng Wang.

Ethics declarations

Ethics approval and consent to participate

All of the authors consent for publication.

Research involving human participants and/or animals

Not applicable.

Informed consent

Not applicable.

Competing interests

The authors declared no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key points

1. H3K27me3 is involved in neuronal apoptosis, necrosis, and ferroptosis.

2. The role of H3K4me3 is clear in neuronal ferroptosis, but elusive in the others.

3. Appropriate studies should be conducted to elucidate the mechanisms of histone methylation in neuronal death.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Zhou, T., Su, Y. et al. Involvement of histone methylation in the regulation of neuronal death. J Physiol Biochem 79, 685–693 (2023). https://doi.org/10.1007/s13105-023-00978-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-023-00978-w

Keywords

Navigation