Skip to main content

Advertisement

Log in

miR-155 activates the NLRP3 inflammasome by regulating the MEK/ERK/NF-κB pathway in carotid atherosclerotic plaques in ApoE−/− mice

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Atherosclerosis is an inflammatory disease. The NLRP3 inflammasome and miR-155 are significant components of inflammation and atherosclerosis. The aim of this research was to explore the possible mechanism by which miR-155 mediates the formation of carotid atherosclerotic plaques via the NLRP3 inflammasome. Fifty 6-week-old male ApoE−/− mice were randomly divided into 5 groups. They are the blank group, the negative control (NC) group, the miR-155 mimic group, the miR-155 inhibitor group, and the miR-155 mimic and ERK inhibitor group. The blood lipid levels were measured by the enzyme method Oil red O, HE, and immunohistochemical staining were used to observe the degree of carotid plaque formation. PCR was used to measure the expression of miR-155. The blood lipid levels were measured by the enzyme method. Western blotting was used to measure the expression of NLRP3 inflammasome-related proteins, interleukin-1β, interleukin-18, and MEK/ERK/NF-κB signaling pathway-related proteins. Compared with those of the NC group, the expression of miR-155 in the miR-155 mimic group increased significantly (P < 0.05), the degree of carotid plaque formation increased, the plasma levels of TC and LDL also increased significantly (P < 0.05); the expression levels of NLRP3 inflammasome-related proteins, interleukin-1β, interleukin-18, and MEK/ERK/NF-κB signaling pathway-related proteins were also significantly increased. Injection of ERK inhibitors into miR-155 mimic mice reduced the expression levels of p-NF-κB, NLRP3 inflammasome-related proteins, and inflammatory cytokines. In conclusion, miR-155 can promote the formation of atherosclerotic plaque in ApoE−/− mice, which may be achieved by regulating the MEK/ERK/NF-κB pathway to activate the NLRP3 inflammasome.

Highlights

• In ApoE−/− mice, miR-155 promotes atherosclerotic plaque formation.

• The NLRP3 inflammasome has an important role in the inflammatory process of atherosclerosis.

• miR-155 activates the NLRP3 inflammasome by regulating the MEK/ERK/NF-κB pathway in carotid atherosclerotic plaques of ApoE−/− mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BCA:

Bicinchoninic acid

DAMPs:

Danger-associated molecular patterns

HDL:

High-density lipoprotein

HE:

Hematoxylin-eosin

IHC:

Immunohistochemical

LDL:

Low-density lipoprotein cholesterol

MAPK:

Mitogen-activated protein kinase

MiRNAs:

MicroRNAs

NC:

Negative control

NF-κB:

Nuclear factor κ-light-chain-enhancer of activated B cells

NLR:

NOD-like receptor

NLRP3:

NOD-like receptor family pyrin domain containing 3

PAMPs:

Pathogen-associated molecular patterns

P-IL-1β:

Pro-interleukin-1β

P-IL-18:

Pro-interleukin-18

PRR:

Pattern recognition receptor

RA:

Rheumatoid arthritis

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

SnRNA:

Small nuclear RNA

TC:

Total cholesterol

TG:

Triglyceride

VSMCs:

Vascular smooth muscle cells

GvHD:

Graft-versus-host disease

References

  1. Alivernini S, Kurowska-Stolarska M, Tolusso B, Benvenuto R, Elmesmari A, Canestri S, Petricca L., Mangoni A, Fedele AL, Di Mario C (2016) MicroRNA-155 influences B-cell function through PU.1 in rheumatoid arthritis. Nature Communications 7:12970. https://doi.org/10.1038/ncomms12970

  2. Artlett CM, Sassi-Gaha S, Hope JL, Feghali-Bostwick CA, Katsikis PD (2017) Mir-155 is overexpressed in systemic sclerosis fibroblasts and is required for NLRP3 inflammasome-mediated collagen synthesis during fibrosis. Arthritis Research & Therapy 19(1):1441–1448. https://doi.org/10.1186/s13075-017-1331-z

    Article  CAS  Google Scholar 

  3. Baldrighi M, Mallat Z, Li X (2017) NLRP3 inflammasome pathways in atherosclerosis. Atherosclerosis 267:127–138. https://doi.org/10.1016/j.atherosclerosis.2017.10.027

    Article  CAS  PubMed  Google Scholar 

  4. Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D, Fernandes-Alnemri T, Wu J, Monks BG, Fitzgerald KA (2009) Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. Journal of Immunology 183:787–791. https://doi.org/10.4049/jimmunol.0901363

    Article  CAS  Google Scholar 

  5. Boaru SG, Borkham-Kamphorst E, Van de Leur E, Lehnen E, Liedtke C, Weiskirchen R (2015) NLRP3 inflammasome expression is driven by NF-kappaB in cultured hepatocytes. Biochemical and Biophysical Research Communications 458:700–706. https://doi.org/10.1016/j.bbrc.2015.02.029

    Article  CAS  PubMed  Google Scholar 

  6. Carmi C et al (2010) Novel irreversible epidermal growth factor receptor inhibitors by chemical modulation of the cysteine-trap portion. J Med Chem 53:2038–2050. https://doi.org/10.1021/jm901558p

    Article  CAS  PubMed  Google Scholar 

  7. Chen S, Smith BA, Iype J, Prestipino A, Pfeifer D, Grundmann S, Schmitt-Graeff A, Idzko M, Beck Y, Prinz G (2015) MicroRNA-155-deficient dendritic cells cause less severe GVHD through reduced migration and defective inflammasome activation. Blood 126:103–112. https://doi.org/10.1182/blood-2014-12-617258

    Article  CAS  PubMed  Google Scholar 

  8. D'Espessailles A, Mora YA, Fuentes C, Cifuentes M (2018) Calcium-sensing receptor activates the NLRP3 inflammasome in LS14 preadipocytes mediated by ERK1/2 signaling. Journal of Cellular Physiology 233:6232–6240. https://doi.org/10.1002/jcp.26490

    Article  CAS  PubMed  Google Scholar 

  9. Dunand-Sauthier I, Santiago-Raber ML, Capponi L, Vejnar CE, Schaad O, Irla M, Seguin-Estevez Q, Descombes P, Zdobnov EM, Acha-Orbea H et al (2011) Silencing of c-Fos expression by microRNA-155 is critical for dendritic cell maturation and function. Blood 117:4490–4500. https://doi.org/10.1182/blood-2010-09-308064

    Article  CAS  PubMed  Google Scholar 

  10. Fann DY, Lim YA, Cheng YL, Lok KZ, Chunduri P, Baik SH, Drummond GR, Dheen ST, Sobey CG, Jo DG et al (2018) Evidence that NF-kappaB and MAPK signaling promotes NLRP inflammasome activation in neurons following ischemic stroke. Molecular Neurobiology 55:1082–1096. https://doi.org/10.1007/s12035-017-0394-9

    Article  CAS  PubMed  Google Scholar 

  11. Faraoni I, Antonetti FR, Cardone J, Bonmassar E (2009) MiR-155 gene: a typical multifunctional microRNA. Biochimica et Biophysica Acta 1792:497–505. https://doi.org/10.1016/j.bbadis.2009.02.013

    Article  CAS  PubMed  Google Scholar 

  12. Grebe A, Hoss F, Latz E (2018) NLRP3 inflammasome and the IL-1 pathway in atherosclerosis. Circulation Research 122:1722–1740. https://doi.org/10.1161/CIRCRESAHA.118.311362

    Article  CAS  PubMed  Google Scholar 

  13. Hansson GK, Hermansson A (2011) The immune system in atherosclerosis. Nature Immunology 12:204–212. https://doi.org/10.1038/ni.2001

    Article  CAS  PubMed  Google Scholar 

  14. Hoseini Z, Sepahvand F, Rashidi B, Sahebkar A, Masoudifar A, Mirzaei H (2018) NLRP3 inflammasome: its regulation and involvement in atherosclerosis. Journal of Cellular Physiology 233:2116–2132. https://doi.org/10.1002/jcp.25930

    Article  CAS  PubMed  Google Scholar 

  15. Hu S, Zhu W, Zhang LF, Pei M, Liu MF (2014) MicroRNA-155 broadly orchestrates inflammation-induced changes of microRNA expression in breast cancer. Cell Research 24:254–257. https://doi.org/10.1038/cr.2013.137

    Article  CAS  PubMed  Google Scholar 

  16. Li X, Kong D, Chen H, Liu S, Hu H, Wu T, Wang J, Chen W, Ning Y, Li Y (2016) miR-155 acts as an anti-inflammatory factor in atherosclerosis-associated foam cell formation by repressing calcium-regulated heat stable protein 1. Scientific Reports 6:21789. https://doi.org/10.1038/srep21789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li P, Wang G, Zhang XL, He GL, Luo X, Yang J, Luo Z, Shen TT, Yang XS (2019) MicroRNA-155 promotes heat stress-induced inflammation via targeting liver x receptor α in microglia. Frontiers in Cellular Neuroscience 13:12. https://doi.org/10.3389/fncel.2019.00012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liang S, Hu J, Zhang A, Li F, Li X (2020) Mir-155 induces endothelial cell apoptosis and inflammatory response in atherosclerosis by regulating bmal1. Experimental and Therapeutic Medicine 20:128. https://doi.org/10.3892/etm.2020.9259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu L, Dong Y, Ye M, Jin S, Yang J, Joosse ME, Sun Y, Zhang J, Lazarev M, Brant SR (2017) The pathogenic role of NLRP3 inflammasome activation in inflammatory bowel diseases of both mice and humans. Journal of Crohn's & colitis 11:737–750. https://doi.org/10.1093/ecco-jcc/jjw219

    Article  Google Scholar 

  20. Murray CJ, Lopez AD (2013) Measuring the global burden of disease. The New England Journal of Medicine 369:448–457. https://doi.org/10.1056/NEJMra1201534

    Article  CAS  PubMed  Google Scholar 

  21. Nazari-Jahantigh M, Wei Y, Noels H et al (2021) MicroRNA-155 promotes atherosclerosis by repressing Bcl6 in macrophages. J Clin Invest 122:4190–4202. https://doi.org/10.1172/JCI61716

    Article  CAS  Google Scholar 

  22. Paramel Varghese G, Folkersen L, Strawbridge RJ, Halvorsen B, Yndestad A, Ranheim T, Krohg-Sorensen K, Skjelland M, Espevik T, Aukrust P (2016) NLRP3 Inflammasome expression and activation in human atherosclerosis. Journal of the American Heart Association 5. https://doi.org/10.1161/JAHA.115.003031

  23. Soh J, Iqbal J, Queiroz J, Fernandez-Hernando C, Hussain MM (2013) Microrna-30c reduces hyperlipidemia and atherosclerosis in mice by decreasing lipid synthesis and lipoprotein secretion. Nature Medicine 19:892–900. https://doi.org/10.1038/nm.3200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sun HX, Zeng DY, Li RT, Pang RP, Yang H, Hu YL, Zhang Q, Jiang Y, Huang LY, Tang YB (2012) Essential role of microRNA-155 in regulating endothelium-dependent vasorelaxation by targeting endothelial nitric oxide synthase. Hypertension 60:1407–1414. https://doi.org/10.1161/HYPERTENSIONAHA.112.197301

    Article  CAS  PubMed  Google Scholar 

  25. Tarallo V, Hirano Y, Gelfand BD, Dridi S, Kerur N, Kim Y, Cho WG, Kaneko H, Fowler BJ, Bogdanovich S (2012) DICER1 loss and Alu RNA induce age-related macular degeneration via the NLRP3 inflammasome and MyD88. Cell 149:847–859. https://doi.org/10.1016/j.cell.2012.03.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vande Walle L, Van Opdenbosch N, Jacques P, Fossoul A, Verheugen E, Vogel P, Beyaert R, Elewaut D, Kanneganti TD, van Loo G (2014) Negative regulation of the NLRP3 inflammasome by A20 protects against arthritis. Nature 512:69–73. https://doi.org/10.1038/nature13322

    Article  CAS  PubMed  Google Scholar 

  27. Vickers KC, Landstreet SR, Levin MG, Shoucri BM, Toth CL, Taylor RC et al (2014) Microrna-223 coordinates cholesterol homeostasis. Proc Natl Acad Sci USA 111:14518–14523. https://doi.org/10.1073/pnas.1215767111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wallace JA, Kagele DA, Eiring AM, Kim CN, Hu R, Runtsch MC, Alexander M, Huffaker TB, Lee SH, Patel AB (2017) MiR-155 promotes FLT3-ITD-induced myeloproliferative disease through inhibition of the interferon response. Blood 129:3074–3086. https://doi.org/10.1182/blood-2016-09-740209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang Z, Yang C, Li L, Jin X, Huang J (2020) Tumor-derived hmgb1 induces cd62ldim neutrophil polarization and promotes lung metastasis in triple-negative breast cancer. Oncogenesis 9:82. https://doi.org/10.1038/s41389-020-00267-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang G, Chen JJ, Deng WY, Ren K, Yu XH (2021) Ctrp12 ameliorates atherosclerosis by promoting cholesterol efflux and inhibiting inflammatory response via the mir-155-5p/lxrα pathway. Cell Death & Disease 12. https://doi.org/10.1038/s41419-021-03544-8

  31. Yang LX, Liu G, Zhu GF, Liu H, Guo RW, Qi F, Zou JH (2014) MicroRNA-155 inhibits angiotensin II-induced vascular smooth muscle cell proliferation. Journal of the renin-angiotensin-aldosterone system : JRAAS 15:109–116. https://doi.org/10.1177/1470320313503693

    Article  CAS  PubMed  Google Scholar 

  32. Yang Y, Yang L, Liang X, Zhu G (2015) MicroRNA-155 promotes atherosclerosis inflammation via targeting SOCS1. Cellular Physiology and Biochemistry 36:1371–1381. https://doi.org/10.1159/000430303

    Article  CAS  PubMed  Google Scholar 

  33. Yang Z, Zheng B, Zhang Y, He M, Zhang XH, Ma D, Zhang RN, Wu XL, Wen JK (2015) MiR-155-dependent regulation of mammalian sterile 20-like kinase 2 (MST2) coordinates inflammation, oxidative stress and proliferation in vascular smooth muscle cells. Biochimica et Biophysica Acta 1852:1477–1489. https://doi.org/10.1016/j.bbadis.2015.04.012

    Article  CAS  PubMed  Google Scholar 

  34. Yin R, Zhu X, Wang J, Yang S, Ma A, Xiao Q, Song J, Pan X (2019) MicroRNA-155 promotes the ox-LDLinduced activation of NLRP3 inflammasomes viathe ERK1/2pathway in THP-1 macrophages and aggravates atherosclerosisin ApoE−/− mice. Ann Palliat Med 8:676–689. https://doi.org/10.21037/apm.2019.10.11

    Article  PubMed  Google Scholar 

  35. Yue G, Mengmeng S et al (2016) Immunomodulatory effects of sulfated polysaccharides of pine pollen on mouse macrophages. International Journal of Biological Macromolecules Structure Function & Interactions. https://doi.org/10.1016/j.ijbiomac.2016.06.021

Download references

Acknowledgements

This project is based on the item subsidized by the National Key R&D Program of China (No. 2017YFC1310903) and the National Natural Sciences Foundation of China (No. 81771259 and No.81971111).

Author information

Authors and Affiliations

Authors

Contributions

AM: conceptualization and supervision. XP: methodology and conceptualization. QP: investigation, methodology, and writing-original draft. RY: investigation and formal analysis. XZ: writing-reviewing and editing. LJ: formal analysis and resources. JW: resources. The authors declare that all data were generated in-house and that no paper mill was used.

Corresponding authors

Correspondence to Xudong Pan or Aijun Ma.

Ethics declarations

Ethics approval

Our study followed the guidelines for the care and use of animals.

Informed consent

All authors involved in the study accept the contents of the manuscript and consent to the submission of the work.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Q., Yin, R., Zhu, X. et al. miR-155 activates the NLRP3 inflammasome by regulating the MEK/ERK/NF-κB pathway in carotid atherosclerotic plaques in ApoE−/− mice. J Physiol Biochem 78, 365–375 (2022). https://doi.org/10.1007/s13105-022-00871-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-022-00871-y

Keywords

Navigation